【JLOI2011】【BZOJ2763】飞行路线

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/CreationAugust/article/details/44346733

Description
Alice和Bob现在要乘飞机旅行,他们选择了一家相对便宜的航空公司。该航空公司一共在n个城市设有业务,设这些城市分别标记为0到n-1,一共有m种航线,每种航线连接两个城市,并且航线有一定的价格。Alice和Bob现在要从一个城市沿着航线到达另一个城市,途中可以进行转机。航空公司对他们这次旅行也推出优惠,他们可以免费在最多k种航线上搭乘飞机。那么Alice和Bob这次出行最少花费多少?
Input
数据的第一行有三个整数,n,m,k,分别表示城市数,航线数和免费乘坐次数。
第二行有两个整数,s,t,分别表示他们出行的起点城市编号和终点城市编号。(0s,t<n)
接下来有m行,每行三个整数,a,b,c,表示存在一种航线,能从城市a到达城市b,或从城市b到达城市a,价格为c。(0a,b<n,a与b不相等,0c1000)

Output

只有一行,包含一个整数,为最少花费。
Sample Input
5 6 1
0 4
0 1 5
1 2 5
2 3 5
3 4 5
2 3 3
0 2 100
Sample Output
8
HINT

对于30%的数据,2n50,1m300,k=0;

对于50%的数据,2n600,1m6000,0k1;

对于100%的数据,2n10000,1m50000,0k10.

傻叉分层图。分层完了裸跑一边优先队列dijkstra好了

///AC code by CreationAugust
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<queue>
#define MAXN 200010
#define MAXM 3000010
#define MAXINT 0x7fffffff
using namespace std;
int s,t;
int n,m,k;
int u,v,w;
struct edge
{
    int to;
    int val;
    edge *next;
}e[MAXM*2],*prev[MAXN];
struct node
{
    int dis;
    int u;
    bool operator<(const node x)const
    {
        return dis>x.dis;
    }
};
int dis[MAXN];
bool vis[MAXN];
int top;
int ans=MAXINT;
priority_queue<node> que; 
void insert(int u,int v,int w)
{
    e[++top].to=v;
    e[top].val=w;
    e[top].next=prev[u];
    prev[u]=&e[top];
}
void dijkstra(int s)
{
    memset(vis,0,sizeof(vis));
    memset(dis,0x7f,sizeof(dis));
    que.push((node){0,s});
    dis[s]=0;
    while (!que.empty())
    {
        node x=que.top();
        que.pop();
        if (!vis[x.u])
        {
            vis[x.u]=1;
            for (edge *i=prev[x.u];i;i=i->next)
                if (dis[i->to]>dis[x.u]+i->val)
                {
                    dis[i->to]=dis[x.u]+i->val;
                    que.push((node){dis[i->to],i->to});
                }
        }
    }
}
int main()
{
    scanf("%d%d%d",&n,&m,&k);
    scanf("%d%d",&s,&t);
    s++;t++;
    for (int i=1;i<=m;i++)
    {
        scanf("%d%d%d",&u,&v,&w);
        u++;v++;
        for (int j=0;j<=k;j++)
        {
            insert(j*n+u,j*n+v,w);
            insert(j*n+v,j*n+u,w);
            if (j<k)
            {
                insert(j*n+u,(j+1)*n+v,0);//分层图的关键,向下一层图加边
                insert(j*n+v,(j+1)*n+u,0); 
            }
        }
    }
    dijkstra(s);
    for (int i=0;i<=k;i++) ans=min(ans,dis[n*i+t]);
    printf("%d",ans);
}
展开阅读全文

没有更多推荐了,返回首页