【国家集训队2012】【BZOJ2738】矩阵乘法

Description

  给你一个N*N的矩阵,不用算矩阵乘法,但是每次询问一个子矩形的第K小数。
Input

  第一行两个数N,Q,表示矩阵大小和询问组数;
  接下来N行N列一共N*N个数,表示这个矩阵;
  再接下来Q行每行5个数描述一个询问:x1,y1,x2,y2,k表示找到以(x1,y1)为左上角、以(x2,y2)为右下角的子矩形中的第K小数。
Output
  对于每组询问输出第K小的数。
Sample Input
2 2
2 1
3 4
1 2 1 2 1
1 1 2 2 3

Sample Output
1
3

HINT

  矩阵中数字是109以内的非负整数;

  20%的数据:N<=100,Q<=1000;

  40%的数据:N<=300,Q<=10000;

  60%的数据:N<=400,Q<=30000;

  100%的数据:N<=500,Q<=60000。

Source

矩阵的整体二分
二维树状数组维护.
忘了加l>r return 不停TLE*T_T*

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<ctime>
#include<algorithm>
#define MAXN 60100
#define lowbit(x)   (x&(-x))
using namespace std;
int n,Q,top,maxn,now;
int c[510][510];
int ans[MAXN];
void add(int x,int y,int delta)
{
    for (int i=x;i<=n;i+=lowbit(i))
        for (int j=y;j<=n;j+=lowbit(j)) c[i][j]+=delta;
}
int query(int x,int y)
{
    int ret=0;
    for (int i=x;i;i-=lowbit(i))
        for (int j=y;j;j-=lowbit(j))    ret+=c[i][j];
    return ret;
}
void in(int &x)
{
    char ch=getchar();x=0;int flag=1;
    while (!(ch>='0'&&ch<='9')) flag=ch=='-'?-1:flag,ch=getchar();
    while (ch>='0'&&ch<='9')    x=x*10+ch-'0',ch=getchar();x*=flag;
}
struct Query
{
    int x1,y1,x2,y2,k,id;
    bool fin;
}q[MAXN],newq[MAXN];
struct operate
{
    int x,y,val;
    bool operator <(const operate& a)const
    {
        return val<a.val;
    }
}a[250010];
void solve(int l,int r,int L,int R)
{
    int mid=(L+R)>>1;
    if (l>r)    return;
    if (L==R)
    {
        for (int i=l;i<=r;i++)  ans[q[i].id]=mid;
        return;
    }
    while (now!=top&&a[now+1].val<=mid) now++,add(a[now].x,a[now].y,1);
    while (a[now].val>mid&&now) add(a[now].x,a[now].y,-1),now--;
    int tp1=l,tp2=r;
    for (int i=l;i<=r;i++)
    {
        int temp=query(q[i].x2,q[i].y2)-query(q[i].x1-1,q[i].y2)-query(q[i].x2,q[i].y1-1)+query(q[i].x1-1,q[i].y1-1);
        if (q[i].k<=temp)   newq[tp1++]=q[i];
        else    newq[tp2--]=q[i];
    }
    memcpy(q+l,newq+l,sizeof(Query)*(r-l+1));
    solve(l,tp1-1,L,mid);solve(tp2+1,r,mid+1,R);
}
int main()
{
    in(n);in(Q);
    for (int i=1;i<=n;i++)
        for (int j=1;j<=n;j++)
            a[++top].x=i,a[top].y=j,in(a[top].val),maxn=max(maxn,a[top].val);
    sort(a+1,a+top+1);
    for (int i=1;i<=Q;i++)  in(q[i].x1),in(q[i].y1),in(q[i].x2),in(q[i].y2),in(q[i].k),q[i].id=i;
    solve(1,Q,0,maxn+1);
    for (int i=1;i<=Q;i++)  printf("%d\n",ans[i]);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>