HashMap数据结构及源码分析

数据结构

1、HashMap由数组、链表、红黑树组成
2、当两个或以上的key相同且key值不同时(发生冲突),就会挂在数组初始化后的链表后
3、当某个节点后出现过多链表节点(8),就会转换成红黑树。

源码分析

通过新增(put)、查询(get)、删除(remove)深度剖析hashMap源码
在这里插入图片描述
1、创建Map实例

 HashMap<String, String> map = new HashMap<>();

2、跟踪构造函数

public HashMap() {
        //初始化载荷系数
        this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
    }
static final float DEFAULT_LOAD_FACTOR = 0.75f;//载荷系数为0.75

3、插入数据 put()

map.put("hello","world");

4、跟踪put()方法

public V put(K key, V value) {
        //hash(key)详见4.1
        return putVal(hash(key), key, value, false, true);
    }

4.1、跟踪hash()方法

    static final int hash(Object key) {
        int h;
        //hashCode后 右移16位异或处理,增加散列度
        return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
    }

5、跟踪putVal()方法

 final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
                   boolean evict) {
        Node<K,V>[] tab; Node<K,V> p; int n, i;
        //transient Node<K,V>[] table;  table初始化为空
        if ((tab = table) == null || (n = tab.length) == 0)
        //resize()函数见5.1说明 返回初始化数组的长度
            n = (tab = resize()).length;
        //如果数组容量-1(即n-1)与hash值进行与运算后为空,说明该下标位置没有数据
        if ((p = tab[i = (n - 1) & hash]) == null)
            //直接插入数据
            tab[i] = newNode(hash, key, value, null);
        else {
        //否则说明该下标位置有数据
            Node<K,V> e; K k;
            //p = tab[i = (n - 1) & hash]
            //如果该下标位置的key和传入的key值相同,e=p
            //先比较hash的好处:hash值不同的key值一定不同,节省运算比较的时间
            if (p.hash == hash &&
                ((k = p.key) == key || (key != null && key.equals(k))))
                e = p;
            //如果p是红黑树节点
            else if (p instanceof TreeNode)
               //调用树的插入函数
                e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
            //否则是单链表,遍历单链表
            else {
                for (int binCount = 0; ; ++binCount) {
                    if ((e = p.next) == null) {
                        p.next = newNode(hash, key, value, null);
                        //红黑树阈值 8,即单链表节点数超过8个转换成红黑树
                        //static final int TREEIFY_THRESHOLD = 8;
                        if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                            //使用树函数
                            treeifyBin(tab, hash);
                        break;
                    }
                    //判断单链表中是否存在相同的key值
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        break;
                    //临时节点,方便遍历
                    p = e;
                }
            }
            //存在key值相同的情况,修改value值
            if (e != null) { // existing mapping for key
                V oldValue = e.value;
                if (!onlyIfAbsent || oldValue == null)
                    e.value = value;
                afterNodeAccess(e);
                return oldValue;
            }
        }
        ++modCount;
        //如果数组容量大于阈值(),进行2倍扩容
        if (++size > threshold)
        //resize()详见5.1
            resize();
        afterNodeInsertion(evict);
        return null;
    }

5.1 resize()函数剖析
resize()函数在初始化和扩容的时候都调用

final Node<K,V>[] resize() {
        //初始化table为空,扩容时为原数组
        Node<K,V>[] oldTab = table;
        //原容量
        int oldCap = (oldTab == null) ? 0 : oldTab.length;
        //初始化阈值容量
        int oldThr = threshold;
        int newCap, newThr = 0;
        //如果原容量大于零
        if (oldCap > 0) {
            //static final int MAXIMUM_CAPACITY = 1 << 30;
            if (oldCap >= MAXIMUM_CAPACITY) {
                threshold = Integer.MAX_VALUE;
                return oldTab;
            }
            //oldCap<<1 相当于原容量2倍
            //static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16
            else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                     oldCap >= DEFAULT_INITIAL_CAPACITY)
                //新的阈值也2倍扩容
                newThr = oldThr << 1; // double threshold
        }
        else if (oldThr > 0) // initial capacity was placed in threshold
            newCap = oldThr;
        //原容量为0,即初始化
        else {               // zero initial threshold signifies using defaults
            //static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16
            //初始化数组容量为16
            newCap = DEFAULT_INITIAL_CAPACITY;
            //初始化阈值为0.75*16 =12
            newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
        }
        if (newThr == 0) {
            float ft = (float)newCap * loadFactor;
            newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                      (int)ft : Integer.MAX_VALUE);
        }
        threshold = newThr;
        @SuppressWarnings({"rawtypes","unchecked"})
            //创建一个新的map容器
            Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
        table = newTab;
        //如果原数组不为空,即扩容时需要将原数组数据插入到新map容器中
        if (oldTab != null) {
            //遍历原数组
            for (int j = 0; j < oldCap; ++j) {
                Node<K,V> e;
                if ((e = oldTab[j]) != null) {
                    oldTab[j] = null;
                    //如果该数组下标位置只有一个元素
                    if (e.next == null)
                        //直接插入到新map中
                        newTab[e.hash & (newCap - 1)] = e;
                    //如果该数组下标位置是树节点
                    else if (e instanceof TreeNode)
                        ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                    //否则就是单链表结构
                    else { // preserve order
                        Node<K,V> loHead = null, loTail = null;
                        Node<K,V> hiHead = null, hiTail = null;
                        Node<K,V> next;
                        //遍历单链表
                        do {
                            next = e.next;
                            if ((e.hash & oldCap) == 0) {
                                if (loTail == null)
                                    loHead = e;
                                else
                                    loTail.next = e;
                                loTail = e;
                            }
                            else {
                                if (hiTail == null)
                                    hiHead = e;
                                else
                                    hiTail.next = e;
                                hiTail = e;
                            }
                        } while ((e = next) != null);
                        if (loTail != null) {
                            loTail.next = null;
                            //插入到原下标位置
                            newTab[j] = loHead;
                        }
                        if (hiTail != null) {
                            hiTail.next = null;
                            //插入到原下标+oladCap位置,与新容量-1 & hash  相同
                            newTab[j + oldCap] = hiHead;
                        }
                    }
                }
            }
        }
        return newTab;
    }

6、get()方法

  public V get(Object key) {
        Node<K,V> e;
        return (e = getNode(hash(key), key)) == null ? null : e.value;
    }
final Node<K,V> getNode(int hash, Object key) {
        Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
        if ((tab = table) != null && (n = tab.length) > 0 &&
            (first = tab[(n - 1) & hash]) != null) {
            //判断是否只有一个元素
            if (first.hash == hash && // always check first node
                ((k = first.key) == key || (key != null && key.equals(k))))
                return first;
            //如果该节点有多个元素
            if ((e = first.next) != null) {
                //判断是否为树节点
                if (first instanceof TreeNode)
                    return ((TreeNode<K,V>)first).getTreeNode(hash, key);
                //遍历单链表
                do {
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        return e;
                } while ((e = e.next) != null);
            }
        }
        return null;
    }

7.remove()方法

    public V remove(Object key) {
        Node<K,V> e;
        return (e = removeNode(hash(key), key, null, false, true)) == null ?
            null : e.value;
    }
final Node<K,V> removeNode(int hash, Object key, Object value,
                               boolean matchValue, boolean movable) {
        Node<K,V>[] tab; Node<K,V> p; int n, index;
        if ((tab = table) != null && (n = tab.length) > 0 &&
            (p = tab[index = (n - 1) & hash]) != null) {
            Node<K,V> node = null, e; K k; V v;
            //判断当前节点是否只有一个元素,借助临时节点node
            if (p.hash == hash &&
                ((k = p.key) == key || (key != null && key.equals(k))))
                node = p;
            else if ((e = p.next) != null) {
                if (p instanceof TreeNode)
                    node = ((TreeNode<K,V>)p).getTreeNode(hash, key);
                else {
                    do {
                        if (e.hash == hash &&
                            ((k = e.key) == key ||
                             (key != null && key.equals(k)))) {
                            node = e;
                            break;
                        }
                        //借助临时节点p保存node的前一个节点
                        p = e;
                    } while ((e = e.next) != null);
                }
            }
            if (node != null && (!matchValue || (v = node.value) == value ||
                                 (value != null && value.equals(v)))) {
                if (node instanceof TreeNode)
                    ((TreeNode<K,V>)node).removeTreeNode(this, tab, movable);
                else if (node == p)
                    tab[index] = node.next;
                else
                    p.next = node.next;
                ++modCount;
                --size;
                afterNodeRemoval(node);
                return node;
            }
        }
        return null;
    }

8、序列化writeObject()

private void writeObject(java.io.ObjectOutputStream s)
        throws IOException {
        //初始化容量
        int buckets = capacity();
        // Write out the threshold, loadfactor, and any hidden stuff
        s.defaultWriteObject();
        s.writeInt(buckets);
        //size为实际节点数
        s.writeInt(size);
        internalWriteEntries(s);
    }
总结:

1、数组容量为2的倍数
①提高运算 速度
②增加散列度,降低冲突
③减少内存碎片
2、hash函数与pos定位
hashCode与右移16后进行异或,增加散列度,降低冲突
3、插入冲突
通过单链表解决冲突,如果链表长度超过8,单链表转换成红黑树提高查询速度
4、扩容
扩容条件:实际节点数大于容量的四分之三
扩容后数据排布:要么是原下标的位置,要么是原下标+原容量的位置。
5、序列化
只存储了数组的容量、实际节点数量和各节点的key、value值

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值