2025第十三届泰迪杯C题-竞赛智能客服机器人【全部解题思路+Python完整项目代码实现】
超全面解析 | 完整代码实现 | 精准RAG问答系统 | 高分保障方案
🏆 赛题背景与要求
2025年第十三届"泰迪杯"数据挖掘挑战赛C题要求参赛者构建一个竞赛智能客服机器人,能够回答用户关于各类竞赛的咨询问题。
随着国内学科和技能竞赛的增多,参赛者对竞赛相关信息的咨询需求不断上升。然而,传统人工客服面临着效率低、成本高、服务不稳定和用户体验差等诸多问题。因此,设计一款智能客服机器人,为赛事提供实时、高效、精准的信息查询服务,成为了迫切的需求。
本赛题提供了18个竞赛规程文档(PDF格式),要求参赛者:
- 竞赛数据整理:从PDF文档中提取竞赛基本信息
- 智能客服机器人构建:能够回答用户关于竞赛的各种咨询问题
- 知识库更新与管理:支持知识库的实时更新和管理
💡 解决方案概述
我们基于最新RAG技术(检索增强生成)构建了一个完整的智能客服机器人系统,能够精准回答用户关于竞赛的各类问题。系统具有以下特点:
- 高效PDF文档处理:自动提取竞赛关键信息
- 精准语义检索:结合FAISS向量检索和BM25关键词检索
- 智能问答生成:基于大模型的精准回答生成
- 知识库实时更新:支持新增和变更竞赛信息
- 批量问答处理:支持批量处理问题,提高效率
- 友好的用户界面:基于Streamlit构建直观界面
🔍 技术实现路线
1. 数据处理与知识库构建
我们使用PyMuPDF库处理PDF文档,提取竞赛关键信息,并构建结构化数据。知识库采用混合检索架构,结合了稠密检索(FAISS)和稀疏检索(BM25)的优势:
# 文本分块与向量化
def _init_text_splitter(self) -> RecursiveCharacterTextSplitter:
"""初始化文本分割器"""
chunk_size = self.retrieval_config.get("chunk_size", 500)
chunk_overlap = self.retrieval_config.get("chunk_overlap", 50)
return RecursiveCharacterTextSplitter(
chunk_size=chunk_size,
chunk_overlap=chunk_overlap,
separators=["\n\n", "\n", "。", "!", "?", ".", "!", "?", " ", ""]
)
2. RAG问答系统实现
系统核心采用RAG架构,通过检索相关文档作为上下文,结合大模型生成精准回答:
def retrieve(self, query: str, top_k: int = None) -> List[Document]:
"""检索知识库"""
# 使用FAISS向量检索
if use_faiss and self.vector_store:
faiss_docs = self.vector_store.similarity_search_with_score(query, k=top_k * 2)
# 处理检索结果...
# 使用BM25检索
if use_bm25 and self.bm25_retriever:
bm25_docs = self.bm25_retriever.get_relevant_documents(query)[:top_k * 2]
# 处理检索结果...
# 结果融合与排序...
return sorted_results[:top_k]
3. 批量问答处理
为满足大规模问题处理需求,我们实现了批量问答处理功能:
def process_excel(self, input_file: str, output_file: str) -> bool:
"""处理Excel文件中的问题"""
# 读取Excel文件
df = pd.read_excel(input_file)
# 处理每个问题
results = []
for _, row in tqdm(df.iterrows(), total=len(df)):
question_id = row["问题编号"]
question = row["问题"]
# 处理问题
result = self.process_question(question, question_id)
results.append(result)
# 保存结果
result_df = pd.DataFrame(results)
result_df.to_excel(output_file, index=False)
return True
4. 知识库更新机制
系统支持知识库的实时更新,包括新增文档和更新文档:
def add_documents(self, docs: List[Document]) -> None:
"""添加文档到知识库"""
# 添加到FAISS向量存储
if self.vector_store is None:
self.vector_store = FAISS.from_documents(docs, self.embeddings)
else:
self.vector_store.add_documents(docs)
# 添加到BM25检索器
if self.bm25_retriever is None:
self.bm25_retriever = BM25Retriever.from_documents(docs)
else:
# 更新BM25检索器
existing_docs = self.bm25_retriever.docs
all_docs = existing_docs + docs
self.bm25_retriever = BM25Retriever.from_documents(all_docs)
📊 项目结构与功能展示
项目采用模块化设计,结构清晰,易于扩展:
主要功能模块:
- 聊天功能:向机器人提问关于竞赛的各种问题
- 知识库管理:上传PDF文件到知识库,查看知识库信息
- 竞赛信息提取:上传竞赛PDF文件,提取竞赛基本信息
- 批量问答处理:从Excel文件批量读取问题并生成回答
🚀 完整项目获取
以上仅为本项目的部分核心实现,完整项目包含:
- ✅ 全部源代码(包含详细注释)
- ✅ 完整的项目报告(包含详细的实现思路和优化方案)
- ✅ 示例数据和测试用例
- ✅ 部署文档和使用说明