练习---爬取薄荷网所有食物卡路里,并分类放入excel中

该博客讲述了作者如何爬取薄荷网上的食物卡路里信息,为确保数据按类别分类,作者选择每次将每个大类的10页数据分别放入队列中,虽然效率较低但保证了数据的分类正确性。最终,这些数据被整理并存入了Excel的不同工作表中。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

首先薄荷网里有11种大的食物分类,每种大的食物分类里有10页,每页10个食物及热量记录。本来想把这一共110个url都放入queue队列中,然后爬取,但是这样会打乱食物的分类,所以就只把每个食物大类的10个页面每次放入queue中,这样保证大类不会错乱,但是会比将110个网页放入queue会慢很多。

然后按照每个大类分别放入excel中的不同表单中。

#爬取薄荷网十一大类食物的卡路里
from gevent import monkey
monkey.patch_all()
import gevent,requests,time,openpyxl,os
from gevent.queue import Queue
from bs4 import BeautifulSoup

start = time.time()

url = 'http://www.boohee.com/food/'
res = requests.get(url)
html = res.text
bs = BeautifulSoup(html,"html.parser")
urls = []  #装每种食物种类的url

li = bs.find(class_='row').find_all('li')  #每种食物大类的url
for f in li:  #f代表每种食物大类
    page_urls = []
    food_url = f.find(class_="img-box").find('a')['href']
    food_url = 'http://www.boohee.com'+food_url
    #food_url是每一种食物大类的url
    for i in range(1,11):
        page_
爬虫(Web Crawler)是一种自动化程序,用于从互联网上收集信息。其主要功能是访问网页、提取数据存储,以便后续分析或展示。爬虫通常由搜索引擎、数据挖掘工具、监测系统等应用于网络数据抓取的场景。 爬虫的工作流程包括以下几个关键步骤: URL收集: 爬虫从一个或多个初始URL开始,递归或迭代地发现新的URL,构建一个URL队列。这些URL可以通过链接分析、站点地图、搜索引擎等方式获取。 请求网页: 爬虫使用HTTP或其他协议向目标URL发起请求,获取网页的HTML内容。这通常通过HTTP请求库实现,如Python中的Requests库。 解析内容: 爬虫对获取的HTML进行解析,提取有用的信息。常用的解析工具有正则表达式、XPath、Beautiful Soup等。这些工具帮助爬虫定位和提取目标数据,如文本、图片、链接等。 数据存储: 爬虫将提取的数据存储到数据库、文件或其他存储介质中,以备后续分析或展示。常用的存储形式包括关系型数据库、NoSQL数据库、JSON文件等。 遵守规则: 为避免对网站造成过大负担或触发反爬虫机制,爬虫需要遵守网站的robots.txt协议,限制访问频率和深度,模拟人类访问行为,如设置User-Agent。 反爬虫应对: 由于爬虫的存在,一些网站采取了反爬虫措施,如验证码、IP封锁等。爬虫工程师需要设计相应的策略来应对这些挑战。 爬虫在各个领域都有广泛的应用,包括搜索引擎索引、数据挖掘、价格监测、新闻聚合等。然而,使用爬虫需要遵守法律和伦理规范,尊重网站的使用政策,确保对被访问网站的服务器负责。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值