MySQL进阶(二)数据结构--树

MySQL进阶–数据结构–树

三、数据结构–树

树是数据结构中的重中之重,尤其以各类二叉树为学习的难点。

数据结构可视化的网站:https://www.cs.usfca.edu/~galles/visualization/Algorithms.html

3.1 重点概念

3.1.1 结点概念

结点是数据结构中的基础,是构成复杂数据结构的基本组成单位。

3.1.2 树结点声明

本系列文章中提及的结点专指树的结点。例如:结点A在图中表示为:

在这里插入图片描述

3.2 树

3.2.1 定义

树(Tree)是n(n>=0)个结点的有限集。n=0时称为空树。在任意一颗非空树中:

1)有且仅有一个特定的称为根(Root)的结点;

2)当n>1时,其余结点可分为m(m>0)个互不相交的有限集T1、T2、…、Tn,其中每一个集合本身又是一棵树,并且称为根的子树。

此外,树的定义还需要强调以下两点:

1)根结点是唯一的,不可能存在多个根结点,数据结构中的树只能有一个根结点。

2)子树的个数没有限制,但它们一定是互不相交的。

示例树:

下图为一棵普通的树:

在这里插入图片描述

图2.1 普通树

由树的定义可以看出,树的定义使用了递归的方式。递归在树的学习过程中起着重要作用,如果对于递归不是十分了解,建议先看看递归算法

3.2.2 结点的度

结点拥有的子树数目称为结点的度。

在这里插入图片描述

3.2.3 结点关系

结点子树的根结点为该结点的孩子结点。相应该结点称为孩子结点的双亲结点(父节点)。

图2.2中,A为B的双亲结点,B为A的孩子结点。

同一个双亲结点的孩子结点之间互称兄弟结点。

图2.2中,结点B与结点C互为兄弟结点。

3.2.4 结点层次

从根开始定义起,根为第一层,根的孩子为第二层,以此类推。

图2.3表示了图2.1所示树的层次关系

在这里插入图片描述

3.2.5 树的深度

树中结点的最大层次数称为树的深度或高度。图2.1所示树的深度为4。

3.3 二叉树

3.3.1 定义

二叉树是n(n>=0)个结点的有限集合,该集合或者为空集(称为空二叉树),或者由一个根结点和两棵互不相交的、分别称为根结点的左子树和右子树组成。

图3.1展示了一棵普通二叉树:

在这里插入图片描述

3.3.2 二叉树特点

由二叉树定义以及图示分析得出二叉树有以下特点:

1)每个结点最多有两颗子树,所以二叉树中不存在度大于2的结点。

2)左子树和右子树是有顺序的,次序不能任意颠倒。

3)即使树中某结点只有一棵子树,也要区分它是左子树还是右子树。

3.3.3 二叉树性质

1)在二叉树的第i层上最多有 2^i-1 个节点 。(i>=1)

2)二叉树中如果深度为k,那么最多有2^k-1个节点。(k>=1)

3)n0=n2+1 n0表示度数为0的节点数,n2表示度数为2的节点数。

4)在完全二叉树中,具有n个节点的完全二叉树的深度为[log2n]+1,其中[log2n]是向下取整。

5)若对含 n 个结点的完全二叉树从上到下且从左至右进行 1 至 n 的编号,则对完全二叉树中任意一个编号为 i 的结点有如下特性:

(1) 若 i=1,则该结点是二叉树的根,无双亲, 否则,编号为 [i/2] 的结点为其双亲结点;
(2) 若 2i>n,则该结点无左孩子, 否则,编号为 2i 的结点为其左孩子结点;
(3) 若 2i+1>n,则该结点无右孩子结点, 否则,编号为2i+1 的结点为其右孩子结点。

3.3.4 斜树

斜树:所有的结点都只有左子树的二叉树叫左斜树。所有结点都是只有右子树的二叉树叫右斜树。这两者统称为斜树。

图3.2 左斜树
图3.2 左斜树

图3.3 右斜树

图3.3 右斜树

3.3.5 满二叉树

满二叉树:在一棵二叉树中。如果所有分支结点都存在左子树和右子树,并且所有叶子都在同一层上,这样的二叉树称为满二叉树。

满二叉树的特点有:

1)叶子只能出现在最下一层。出现在其它层就不可能达成平衡。

2)非叶子结点的度一定是2。

3)在同样深度的二叉树中,满二叉树的结点个数最多,叶子数最多。

图3.4 满二叉树

图3.4 满二叉树

3.3.6 完全二叉树

完全二叉树:对一颗具有n个结点的二叉树按层编号,如果编号为i(1<=i<=n)的结点与同样深度的满二叉树中编号为i的结点在二叉树中位置完全相同,则这棵二叉树称为完全二叉树。

图3.5展示一棵完全二叉树

在这里插入图片描述

图3.5 完全二叉树

特点:

1)叶子结点只能出现在最下层和次下层。

2)最下层的叶子结点集中在树的左部。

3)倒数第二层若存在叶子结点,一定在右部连续位置。

4)如果结点度为1,则该结点只有左孩子,即没有右子树。

5)同样结点数目的二叉树,完全二叉树深度最小。

注:满二叉树一定是完全二叉树,但反过来不一定成立。

3.3.7 二叉树的存储结构
3.3.7.1 顺序存储

二叉树的顺序存储结构就是使用一维数组存储二叉树中的结点,并且结点的存储位置,就是数组的下标索引。

在这里插入图片描述

所示的一棵完全二叉树采用顺序存储方式,如图3.7表示:

在这里插入图片描述

顺序存储

由图可以看出,当二叉树为完全二叉树时,结点数刚好填满数组。

那么当二叉树不为完全二叉树时,采用顺序存储形式如何呢?例如:对于图3.8描述的二叉树:

在这里插入图片描述

其中浅色结点表示结点不存在。那么图3.8所示的二叉树的顺序存储结构如图3.9所示:

在这里插入图片描述

其中,∧表示数组中此位置没有存储结点。此时可以发现,顺序存储结构中已经出现了空间浪费的情况。

那么对于图3.3所示的右斜树极端情况对应的顺序存储结构如图3.10所示:

在这里插入图片描述

可以看出,对于这种右斜树极端情况,采用顺序存储的方式是十分浪费空间的。因此,顺序存储一般适用于完全二叉树。

3.3.7.2 二叉链表

既然顺序存储不能满足二叉树的存储需求,那么考虑采用链式存储。由二叉树定义可知,二叉树的每个结点最多有两个孩子。因此,可以将结点数据结构定义为一个数据和两个指针域。表示方式如图3.11所示:
在这里插入图片描述

定义结点代码:

TreeNode{
T data;//数据
TreeNode left;
TreeNode right;
}

则图3.6所示的二叉树可以采用图3.12表示。

在这里插入图片描述

图3.12

图3.12中采用一种链表结构存储二叉树,这种链表称为二叉链表。

3.3.8 二叉树遍历

二叉树的遍历一个重点考查的知识点。

3.3.8.1 定义

二叉树的遍历是指从二叉树的根结点出发,按照某种次序依次访问二叉树中的所有结点,使得每个结点被访问一次,且仅被访问一次。

二叉树的访问次序可以分为四种:

首先了解一下递归遍历

由上自下,从左到右

每个节点会走三次。

3.3.8.2 前序遍历

前序遍历通俗的说就是从二叉树的根结点出发,当第一次到达结点时就输出结点数据,按照先向左在向右的方向访问。

在这里插入图片描述

如图所示二叉树访问如下:

先序遍历的结果: ABDHIEJCFG

3.3.8.3 中序遍历

中序遍历就是从二叉树的根结点出发,当第二次到达结点时就输出结点数据,按照先向左在向右的方向访问。

中序遍历输出为:HDIBJEAFCG

3.3.8.4 后序遍历

后序遍历就是从二叉树的根结点出发,当第三次到达结点时就输出结点数据,按照先向左在向右的方向访问。

后序遍历输出为:HIDJEBFGCA

3.3.8.5 层次遍历

层次遍历就是按照树的层次自上而下的遍历二叉树。针对图3.13所示二叉树的层次遍历结果为:ABCDEFGHIJ
层次遍历的详细方法可以参考二叉树的按层遍历法。

public class RecursiveBinaryTree
  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值