给你两个正整数 n
和 limit
。
请你将 n
颗糖果分给 3
位小朋友,确保没有任何小朋友得到超过 limit
颗糖果,请你返回满足此条件下的 总方案数 。
示例 1:
输入:n = 5, limit = 2 输出:3 解释:总共有 3 种方法分配 5 颗糖果,且每位小朋友的糖果数不超过 2 :(1, 2, 2) ,(2, 1, 2) 和 (2, 2, 1) 。
示例 2:
输入:n = 3, limit = 3 输出:10 解释:总共有 10 种方法分配 3 颗糖果,且每位小朋友的糖果数不超过 3 :(0, 0, 3) ,(0, 1, 2) ,(0, 2, 1) ,(0, 3, 0) ,(1, 0, 2) ,(1, 1, 1) ,(1, 2, 0) ,(2, 0, 1) ,(2, 1, 0) 和 (3, 0, 0) 。
提示:
1 <= n <= 50
1 <= limit <= 50
方法一
class Solution {
public:
int distributeCandies(int n, int limit) {
int ans = 0;
for (int i = 0; i <= limit; i++)
for (int j = 0; j <= limit; j++)
for (int k = 0; k <= limit; k++)
if (i + j + k == n)
ans++;
return ans;
}
};
方法二
class Solution {
public:
int distributeCandies(int n, int limit) {
int cnt = 0;
// 两重循环,分别表示给第一个和第二个小朋友的糖果数量
for (int i = 0; i <= limit; i++) {
for (int j = 0; j <= limit; j++) {
int k = n - i - j; // 剩下的糖果数量分给第三个小朋友
if (k >= 0 && k <= limit) { // 判断是否满足限制条件
cnt++;
}
}
}
return cnt;
}
};
原本使用的是三重循环,每个小朋友的糖果数都通过循环来枚举。但实际上,由于每次枚举前两个小朋友的糖果数后,第三个小朋友的糖果数可以通过数学公式 k = n - i - j
直接计算,所以我们可以 去掉第三个循环,从而减少了计算量。
方法三
class Solution {
public:
int C2(int x) { // 计算 C2(x),即从 x 中选择 2 的组合数
return x <= 1 ? 0 : x * (x - 1) / 2;
}
int distributeCandies(int n, int limit) {
int res = C2(n + 2); // 总方案数
// 计算超出 limit 的情况
int one = 3 * C2(n - (limit + 1) + 2); // 一个小朋友超过 limit
int two = 3 * C2(n - 2 * (limit + 1) + 2); // 两个小朋友超过 limit
int three = C2(n - 3 * (limit + 1) + 2); // 三个小朋友超过 limit
return res - one + two - three;
}
};
挡板法:可以将问题转化为在物体之间插入隔板
C2(x)
函数用于计算从 x
中选择 2 的组合数,因为只有3 个小朋友,所以只要放两个挡板,由于小朋友可以得到零个糖果,所以三个小朋友两边也可以放挡板,所以每一个可以放挡板的位置要+2
排除存在一个小朋友超过限制: int one = 3 * C2(n - (limit + 1) + 2); 我们选择一个小朋友让他得到超过 limit
的糖果:(limit+1),
然后再把剩余的糖果(n - (limit + 1)
)分配给3个小朋友(包括那个已经超过 limit
的小朋友)。由于有3个小朋友,我们可以选择这3个中的任意一个小朋友,因此这个情况下的方案数需要乘以3。
排除两个小朋友超过限制:当两个小朋友的糖果数超过 limit
时,设他们各自得到了 limit + 1
颗糖果。此时,剩下的糖果数为 n - 2 * (limit + 1)
。这里同样需要乘以3,因为我们可以选择这3个小朋友中的任意两个。
排除三个小朋友都超过限制:如果三个小朋友都超过了 limit
,每个人得到 limit + 1
颗糖果。此时,剩余的糖果数为 n - 3 * (limit + 1)