将 n 颗糖果分给 3 位小朋友

给你两个正整数 n 和 limit 。

请你将 n 颗糖果分给 3 位小朋友,确保没有任何小朋友得到超过 limit 颗糖果,请你返回满足此条件下的 总方案数 。

示例 1:

输入:n = 5, limit = 2
输出:3
解释:总共有 3 种方法分配 5 颗糖果,且每位小朋友的糖果数不超过 2 :(1, 2, 2) ,(2, 1, 2) 和 (2, 2, 1) 。

示例 2:

输入:n = 3, limit = 3
输出:10
解释:总共有 10 种方法分配 3 颗糖果,且每位小朋友的糖果数不超过 3 :(0, 0, 3) ,(0, 1, 2) ,(0, 2, 1) ,(0, 3, 0) ,(1, 0, 2) ,(1, 1, 1) ,(1, 2, 0) ,(2, 0, 1) ,(2, 1, 0) 和 (3, 0, 0) 。

提示:

  • 1 <= n <= 50
  • 1 <= limit <= 50

 方法一

class Solution {
public:
    int distributeCandies(int n, int limit) {
        int ans = 0;
        for (int i = 0; i <= limit; i++)
            for (int j = 0; j <= limit; j++)
                for (int k = 0; k <= limit; k++)
                    if (i + j + k == n)
                        ans++;

        
        return ans;
    }
};

 方法二

class Solution {
public:
    int distributeCandies(int n, int limit) {
        int cnt = 0;

        // 两重循环,分别表示给第一个和第二个小朋友的糖果数量
        for (int i = 0; i <= limit; i++) {
            for (int j = 0; j <= limit; j++) {
                int k = n - i - j;   // 剩下的糖果数量分给第三个小朋友
                if (k >= 0 && k <= limit) { // 判断是否满足限制条件
                    cnt++;
                }
            }
        }

        return cnt;
    }
};

 原本使用的是三重循环,每个小朋友的糖果数都通过循环来枚举。但实际上,由于每次枚举前两个小朋友的糖果数后,第三个小朋友的糖果数可以通过数学公式 k = n - i - j 直接计算,所以我们可以 去掉第三个循环,从而减少了计算量。

方法三

class Solution {
public:
    int C2(int x) { // 计算 C2(x),即从 x 中选择 2 的组合数
        return x <= 1 ? 0 : x * (x - 1) / 2; 
    }

    int distributeCandies(int n, int limit) {

        int res = C2(n + 2); // 总方案数

        // 计算超出 limit 的情况
        int one = 3 * C2(n - (limit + 1) + 2); // 一个小朋友超过 limit
        int two = 3 * C2(n - 2 * (limit + 1) + 2); // 两个小朋友超过 limit
        int three = C2(n - 3 * (limit + 1) + 2); // 三个小朋友超过 limit

        return res - one + two - three; 
    }
};

挡板法:可以将问题转化为在物体之间插入隔板

C2(x) 函数用于计算从 x 中选择 2 的组合数,因为只有3 个小朋友,所以只要放两个挡板,由于小朋友可以得到零个糖果,所以三个小朋友两边也可以放挡板,所以每一个可以放挡板的位置要+2

排除存在一个小朋友超过限制: int one = 3 * C2(n - (limit + 1) + 2);  我们选择一个小朋友让他得到超过 limit 的糖果:(limit+1),

然后再把剩余的糖果(n - (limit + 1))分配给3个小朋友(包括那个已经超过 limit 的小朋友)。由于有3个小朋友,我们可以选择这3个中的任意一个小朋友,因此这个情况下的方案数需要乘以3。

排除两个小朋友超过限制:当两个小朋友的糖果数超过 limit 时,设他们各自得到了 limit + 1 颗糖果。此时,剩下的糖果数为 n - 2 * (limit + 1)。这里同样需要乘以3,因为我们可以选择这3个小朋友中的任意两个。

排除三个小朋友都超过限制:如果三个小朋友都超过了 limit,每个人得到 limit + 1 颗糖果。此时,剩余的糖果数为 n - 3 * (limit + 1)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值