产险精算GLM-GAM案例

继续使用北美产险精算学会CAS网站上的一个案例,对案例略作修改后进行验证。

ClassAOITerrExposureClaims
1Low176
2Medium110844
3High1179105
4Low213062
5Medium212682
6High2129120
7Low314384
8Medium3126101
9High34046

GLM 模型结果,见文章:产险精算GLM案例2_人附翠微J的博客-CSDN博客​​​​​​

下面我们来看 GAM 的结果。这里,我们对 Claims 做拟合,因为如果对Freq做拟合的话,由于因变量 AOI 和 Terr 都是分类变量,则无法使用 GAM 做拟合了。

此处,我们将 Exposure 作为自变量放入模型,因此不再需要在模型中使用 Weights=Exposure 了。

搭建 GAM 模型的关键是超参数样条函数的选择。

(1)我们从最低配置开始做模型,即样条基函数的个数取3,degree也就是样条基函数的幂次数取2,得到的结果如下:

 

 从模型结果可以看到,Claims拟合值已经很接近Claims实际值。

(2)如果我们对超参数样条函数的选择选取最高配置,即样条基函数的个数取4,degree也就是样条基函数的幂次数取3,得到的结果如下:

 从模型结果可以看出来,Claims拟合值已经非常接近Claims实际值。当然,AIC和BIC的指标值都有所上升,因此不排除 过拟合 的可能性。因此,从模型应用的角度,选择 低配版的GAM 可能就可以了。

(3)小结

普通线性模型OLM的升级是广义线性模型GLM,OLM 只是 GLM 的一个特例。

广义线性模型GLM的升级是广义加法模型GAM,而 GLM 只是 GAM 的一个特例。

但是,实践中要慎用 GAM,因为从上面的例子可以看到,GAM由于样条函数的存在,使其可解释性不如GLM好,而且 配置高 的 GAM 也很容易出现 过拟合 的现象,对 数据训练集 拟合程度很好,但未必适用于 数据测试集。

(Respects to 精算部落)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值