继续使用北美产险精算学会CAS网站上的一个案例,对案例略作修改后进行验证。
Class | AOI | Terr | Exposure | Claims |
1 | Low | 1 | 7 | 6 |
2 | Medium | 1 | 108 | 44 |
3 | High | 1 | 179 | 105 |
4 | Low | 2 | 130 | 62 |
5 | Medium | 2 | 126 | 82 |
6 | High | 2 | 129 | 120 |
7 | Low | 3 | 143 | 84 |
8 | Medium | 3 | 126 | 101 |
9 | High | 3 | 40 | 46 |
GLM 模型结果,见文章:产险精算GLM案例2_人附翠微J的博客-CSDN博客
下面我们来看 GAM 的结果。这里,我们对 Claims 做拟合,因为如果对Freq做拟合的话,由于因变量 AOI 和 Terr 都是分类变量,则无法使用 GAM 做拟合了。
此处,我们将 Exposure 作为自变量放入模型,因此不再需要在模型中使用 Weights=Exposure 了。
搭建 GAM 模型的关键是超参数样条函数的选择。
(1)我们从最低配置开始做模型,即样条基函数的个数取3,degree也就是样条基函数的幂次数取2,得到的结果如下:
从模型结果可以看到,Claims拟合值已经很接近Claims实际值。
(2)如果我们对超参数样条函数的选择选取最高配置,即样条基函数的个数取4,degree也就是样条基函数的幂次数取3,得到的结果如下:
从模型结果可以看出来,Claims拟合值已经非常接近Claims实际值。当然,AIC和BIC的指标值都有所上升,因此不排除 过拟合 的可能性。因此,从模型应用的角度,选择 低配版的GAM 可能就可以了。
(3)小结
普通线性模型OLM的升级是广义线性模型GLM,OLM 只是 GLM 的一个特例。
广义线性模型GLM的升级是广义加法模型GAM,而 GLM 只是 GAM 的一个特例。
但是,实践中要慎用 GAM,因为从上面的例子可以看到,GAM由于样条函数的存在,使其可解释性不如GLM好,而且 配置高 的 GAM 也很容易出现 过拟合 的现象,对 数据训练集 拟合程度很好,但未必适用于 数据测试集。
(Respects to 精算部落)