AT_abc172_e [ABC172E] NEQ 题解

题意

有两个包含 n n n 个数字的序列 A A A B B B,满足一下条件:

1 ≤ A i , B i ≤ m , ( i ∈ [ i , n ] ) 1\leq A_i,B_i\leq m,(i\in[i,n]) 1Ai,Bim,(i[i,n])
A i ≠ B i , ( i ∈ [ i , n ] ) A_i\neq B_i,(i\in[i,n]) Ai=Bi,(i[i,n])
A i ≠ A j , B i ≠ B j , ( 1 ≤ i < j ≤ n ) A_i\neq A_j,B_i\neq B_j,(1\leq i<j\leq n) Ai=Aj,Bi=Bj,(1i<jn)
给定 n n n m m m,且 n ≤ m n\leq m nm,求合法的方案数,答案需要对 1 0 9 + 7 10^9 + 7 109+7 取模。

两种不同的方案,当且仅当序列 A A A 不同或序列 B B B 不同。

两个序列不同,当且仅当 ∀ i , j ≤ n , a [ i ] ≠ a [ j ] \forall i,j\leq n,a[i]\neq a[j] i,jn,a[i]=a[j]

思路

错排问题的变式。

首先来说明错排问题的递推解法: d p [ i ] = ( i − 1 ) ( d p [ i − 1 ] + d p [ i − 2 ] ) dp[i]=(i-1)(dp[i-1]+dp[i-2]) dp[i]=(i1)(dp[i1]+dp[i2])

其中, d p [ i ] dp[i] dp[i] 1 1 1 ~ i i i 的错排方案数。

证明:对于第 i i i 个加入的数字,值为 i i i,有 n − 1 n-1 n1 种放发(不能够放在位置 n n n 上)。

对于每一个 k k k 不与 i i i 相等,将 i i i 放在位置 k k k,有两种情况:

  • k k k 放在位置 i i i 上,则相当于不管 i i i k k k,然后剩下的 i − 2 i-2 i2 个数字错排,有 d p [ i − 2 ] dp[i-2] dp[i2] 种情况。
  • k k k 没有放在位置 i i i 上,因为 k k k 不能放在位置 i i i 上,所以就相当于不包括数字 i i i 的错排,有 d p [ i − 1 ] dp[i-1] dp[i1] 种情况。

我们首先固定序列 A A A,选出 n n n 个数字,则共有 A m n A_{m}^{n} Amn 种方案。则对于这 A m n A_{m}^{n} Amn 种方案,所选出的 B B B 构成的合法方案都不同,那么就只用针对一个典型的案例来进行研究就行了。为了方便,选择序列 A = 1 , 2 … n A={1,2\dots n} A=1,2n 为典例。

则问题就可以转换为:加入 n n n 个数字使得这些数字都在 1 1 1 ~ m m m 内,且互不相同,且满足: i i i 不在位置 i i i 上, i ∈ [ 1 , n ] i\in[1,n] i[1,n]

我将这个问题称之为“假错排”。

“假错排”就是在上述的情况上加上一种情况:

对于第 i i i 次加入数字,将任意一个数字 k ( k ∈ [ 1 , m ] , k ∉ { b 1 , b 2 … b i − 1 } , k ∉ [ i + 1 , n ] ) k(k\in[1,m],k\notin\lbrace b_1,b_2\dots b_{i-1}\rbrace,k\notin[i+1,n]) k(k[1,m],k/{b1,b2bi1},k/[i+1,n]) 填入位置 n n n,则可以选择 m − n m-n mn 种数字。
对于上面的这句话可以理解为最开始可以选择不在 A A A 序列中的数字,有 m − n m-n mn 个数字,这些数字是不参与 i − 1 i-1 i1 前的“假错排”的。而每选择一个这样的数字,都会覆盖掉一个位置 k k k,也就是剩下了 m − n − 1 m-n-1 mn1 个数字。但是,数字 k k k 在之后的筛选中,将不会参与 i − 1 i-1 i1 前的“假错排”,所以有每次都有 m − n m-n mn 个数字可供选择,即第三种情况。

则可以得到状态转移方程: d p [ i ] = ( m − n ) d p [ i − 1 ] + ( i − 1 ) ( d p [ i − 1 ] + d p [ i − 2 ] ) dp[i]=(m-n)dp[i-1]+(i-1)(dp[i-1]+dp[i-2]) dp[i]=(mn)dp[i1]+(i1)(dp[i1]+dp[i2])

然后这道题就做完了。

代码:

#include <cstdio>
#define int long long
const int MAXN = 5e5 + 5;
const int MOD = 1e9 + 7;
int dp[MAXN], n, m, ans;
signed main() {
	scanf("%lld %lld", &n, &m);
	dp[0] = 1;
	dp[1] = m - n;
	for(int i = 2; i <= n; i++)
		dp[i] = ((m - n) * dp[i - 1] % MOD + (i - 1) * (dp[i - 2] + dp[i - 1]) % MOD) % MOD;
	ans = dp[n];
	for(int i = m, j = 1; j <= n; i--, j++)
		ans = (ans * i) % MOD;
	printf("%lld", ans);
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值