计数排序及代码实现

计数排序是一个非基于比较的排序算法,该算法于1954年由 Harold H. Seward 提出。它的优势在于在对一定范围内的整数排序时,它的复杂度为Ο(n+k)(其中k是整数的范围),快于任何比较排序算法。

当然这是一种牺牲空间换取时间的做法,而且当O(k)>O(nlog(n))的时候其效率反而不如基于比较的排序(基于比较的排序的时间复杂度在理论上的下限是O(nlog(n)), 如归并排序,堆排序)

算法代码如下,原理都写在注释中了
参考文章

void CountSort(int array[],int length)
{
    //寻找array中的最大值
    int maxVal = array[0];
    for (int i = 0; i < length; i++)
        maxVal = max(array[i], maxVal);

    //以最大值创建计数数组,初始值全为0,数组长度为最大值+1,这样就可以包含最大值了
    //数组的索引就是array数组中的值,数组的内容就是该值在array数组中出现的次数
    vector<int> count(maxVal + 1, 0);
    for (int i = 0; i < length; i++)
        count[array[i]]++;

    //建立好后就按顺序从小到大将得到的结果搬回array数组,得到结果
    int index = 0;
    for (int i = 0; i < count.size(); i++)
    {
        //主要count[i]还有次数(不为0),就把此时对应的索引值加到array数组里边去
        while (count[i] > 0)
        {
			array[index] = i;
            count[i]--;
			index++;
        }
    }
}

int main()
{
    int array[] ={ 0, 2, 5, 3, 7, 9, 10, 3, 7, 6 };
    CountSort(array, 10);

    for (int i = 0; i < 10; i++)
        cout<<array[i] << " ";
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值