计数排序是一个非基于比较的排序算法,该算法于1954年由 Harold H. Seward 提出。它的优势在于在对一定范围内的整数排序时,它的复杂度为Ο(n+k)(其中k是整数的范围),快于任何比较排序算法。
当然这是一种牺牲空间换取时间的做法,而且当O(k)>O(nlog(n))的时候其效率反而不如基于比较的排序(基于比较的排序的时间复杂度在理论上的下限是O(nlog(n)), 如归并排序,堆排序)
算法代码如下,原理都写在注释中了
参考文章
void CountSort(int array[],int length)
{
//寻找array中的最大值
int maxVal = array[0];
for (int i = 0; i < length; i++)
maxVal = max(array[i], maxVal);
//以最大值创建计数数组,初始值全为0,数组长度为最大值+1,这样就可以包含最大值了
//数组的索引就是array数组中的值,数组的内容就是该值在array数组中出现的次数
vector<int> count(maxVal + 1, 0);
for (int i = 0; i < length; i++)
count[array[i]]++;
//建立好后就按顺序从小到大将得到的结果搬回array数组,得到结果
int index = 0;
for (int i = 0; i < count.size(); i++)
{
//主要count[i]还有次数(不为0),就把此时对应的索引值加到array数组里边去
while (count[i] > 0)
{
array[index] = i;
count[i]--;
index++;
}
}
}
int main()
{
int array[] ={ 0, 2, 5, 3, 7, 9, 10, 3, 7, 6 };
CountSort(array, 10);
for (int i = 0; i < 10; i++)
cout<<array[i] << " ";
return 0;
}