探索性因素分析与验证性因素分析的区别及编程实现
探索性因素分析(Exploratory Factor Analysis,EFA)和验证性因素分析(Confirmatory Factor Analysis,CFA)是统计学中常用的多变量分析方法,用于研究观测变量之间的潜在结构。本文将详细介绍探索性因素分析和验证性因素分析的区别,并提供相应的编程实现。
一、探索性因素分析(EFA)
探索性因素分析是一种无先验假设的数据降维方法,用于确定一组未观测的潜在因素,这些潜在因素可以解释观测变量之间的相关性。EFA的主要目标是通过发现数据中存在的潜在结构,减少变量的数量并简化数据分析。下面是使用SPSS进行探索性因素分析的示例代码:
FACTOR
/VARIABLES = var1 var2 var3 var4
/MISSING = LISTWISE
/ANALYSIS var1 var2 var3 var4
/PRINT = INITIAL CORRELATION EXTRACTION
/PLOT = SCREE
/CRITERIA = FACTORS(2) ITERATE(25).
在上述代码中,VARIABLES
指定了进行因子分析的变量名,MISSING
指定了处理缺失值的方法。