探索性因素分析与验证性因素分析的区别及编程实现

432 篇文章 ¥59.90 ¥99.00
本文详细介绍了探索性因素分析(EFA)和验证性因素分析(CFA)的区别,EFA作为数据降维方法无先验假设,而CFA则用于验证理论模型。同时,提供了使用SPSS进行EFA和CFA的编程示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

探索性因素分析与验证性因素分析的区别及编程实现

探索性因素分析(Exploratory Factor Analysis,EFA)和验证性因素分析(Confirmatory Factor Analysis,CFA)是统计学中常用的多变量分析方法,用于研究观测变量之间的潜在结构。本文将详细介绍探索性因素分析和验证性因素分析的区别,并提供相应的编程实现。

一、探索性因素分析(EFA)
探索性因素分析是一种无先验假设的数据降维方法,用于确定一组未观测的潜在因素,这些潜在因素可以解释观测变量之间的相关性。EFA的主要目标是通过发现数据中存在的潜在结构,减少变量的数量并简化数据分析。下面是使用SPSS进行探索性因素分析的示例代码:

FACTOR
  /VARIABLES = var1 var2 var3 var4
  /MISSING = LISTWISE
  /ANALYSIS var1 var2 var3 var4
  /PRINT = INITIAL CORRELATION EXTRACTION
  /PLOT = SCREE
  /CRITERIA = FACTORS(2) ITERATE(25).

在上述代码中,VARIABLES指定了进行因子分析的变量名,MISSING指定了处理缺失值的方法。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值