使用R语言应用回归模型预测新的预测变量对应的响应变量
回归分析是一种常用的统计方法,用于建立预测变量与响应变量之间的关系模型。在R语言中,我们可以使用各种回归模型来进行预测和分析。本文将介绍如何使用R语言应用回归模型来预测新的预测变量对应的响应变量,并提供相应的源代码示例。
首先,我们需要准备数据集。假设我们有一个已知的数据集,其中包含预测变量和响应变量的观测值。我们将使用这些数据来建立回归模型,并用于预测新的预测变量对应的响应变量。
以下是一个简单的示例数据集,其中包含了两个预测变量(X1和X2)和一个响应变量(Y):
# 创建示例数据集
X1 <- c(1, 2, 3, 4, 5)
X2 <- c(6, 7, 8, 9, 10)
Y <- c(11, 12, 13, 14, 15)
# 将数据集合并为一个数据框
data <- data.frame(X1, X2, Y)
# 查看数据框
print(data)
接下来,我们将使用线性回归模型来建立预测变量和响应变量之间的关系。在R语言中,可以使用lm()函数来拟合线性回归模型。
# 拟合线性回归模型
model <- lm(Y ~ X1 + X2, data = data)
# 查看回归模型的摘要信息
summary(model