简介
这里的话,我个人的想法是,建立一个国内大家常用可以下载的数据集的汇总地址。这里的话常用的数据集的话我会慢慢自己下载下来以后整理到百度网盘。这里的链接可能会失效,如果失效欢迎联系我,回复我我每天都会定时看,然后更新一下dataset链接的。
如果各位有冷门数据库需要下载的也可以联系我,我国外有不少靠谱的资源,可以代下载。如果数据库非常大,我个人可能不能保证时效,但是一旦数据传到我这里我都会更新出来。
1.0 MNIST
这个数据集主要就是手写数字数据集,这里的话整个数据集一共有60000张训练图片和10000张测试图片。
Each feature vector is 784-dim, corresponding to the 28 × 28 grayscale pixel intensities of the image.
These grayscale pixel intensities are unsigned integers, falling into the range [0, 255].
Project Site:
http://yann.lecun.com/exdb/mnist/
国内百度云地址:
链接:https://pan.baidu.com/s/14zQWv1chyz8JRBKZXB27mw 密码:88fe
1.1 Animals
这个数据集的话,是从Kaggle challenge中间的Dogs vs. Cats提取出来的。其中包括:狗、猫、熊猫。一共就3000张图像。
1.2 CIFAR-10
CIFAR-10 包括60,000张 32 × 32 × 3 (RGB) 图片,其中的feature vector 为 3072.
CIFAR-10 包括了10个种类: airplanes, automobiles, birds, cats, deer, dogs, frogs,
horses, ships, and trucks.
1.3 SMILES
SMILES数据包括了人脸,其中的话人脸的话都是小伙着不笑的。
图片的话是灰度图片,其中的话一共有13165张灰度图片,每张图片的尺寸是: 64 ∗ 64 64*64 64∗64
整个数据集里面的图片都是在人脸区域做了crop,这个对我们希望在人脸上面进行数据处理的情况可以提供很大的方便。
1.4 kaggle:Dogs vs Cats
这里的话,The Dogs vs. Cats challenge 是kaggle数据科学竞赛的一部分,目的是看我们的算法能够怎么样正确的对于我们的数据进行分类,究竟是包含狗还是猫。总共的话一共有25000张图片,同时的话图片的分辨率也是各不相同的。
1.6 FLOWER-17
Flowers-17数据集是一个17个种类的数据集,其中的话,每一个种类的话都有80张图片。这个数据集适合进行我们的花的种类分类。
这个花的数据集的话,我们很容易出现overfitting的问题,所以说我们如果需要进行调整这个数据集的话,那么我们需要好好的去应对一下这个数据集。
1.7 CALTECH-101
CALTECH-101这个数据集的话,是一个流行的在目标识别领域流行的benchmark dataset,是由Li fei-fei女神提出来的。
这个数据集一共有8677张图像,这些图像分别隶属于101个种类,这里的话物体的种类非常的多,包括:大象、自行车、足球甚至还有人类的大脑。
这个数据集的特点是:这些数据的话,各个类别之中的图片是不均衡的,这个在我们训练的时候,也适合我们对于这些情况进行一个特别技巧的学习。
1.8 ImageNet 200
这里的话,这个数据集的话其实是斯坦福大学cs231n的课程中提出的一个作业的数据集。
这里的话,数据集一共有500张训练图像,50张验证图像和50张测试图像;这些图像一共有200个分类。这里的话每一幅图像都是预先处理过的,尺寸是 64 ∗ 64 64*64 64∗64的彩色图片。
1.9 Adience
在Adience 数据集当中,这个数据集的话是用来做人的年龄和性别识别的。总共有26580张图片,人的年龄的话是在0-60岁之间。这里的话我们数据集的整体目标是:预测图片中主体的年纪和性别。
1.10 ImageNet
这个数据集的话原先是想要建立一个22000分类的图片数据集,但是现在已经有了14 million images。
1.11 ImageNet Large Scale Visual Recognition Challenge
这里的话我们会有一个ImageNet 大尺寸的识别挑战。这个挑战的话需要的是把图片都分成1000个独立的类别,这里的话使用了1.2million的训练图像,50000张的验证图像和100000张测试图像。
1.12 Kaggle: Facial Expression Recognition Challenge
这个数据集。里面的话总共有35888张人脸图像,这里的话我们需要把人脸图片分成7个种类:生气、恶心、害怕、快乐、悲伤、惊讶、中性(面无表情)
1.13 Indoor CVPR
这里的话这个Indoor的数据集的话,是包括一系列的室内图像的,包括了:店铺、房屋、休闲空间、工作空间和公共空间。这个数据集的目标非常的简单,我们需要训练一个数据集,这个数据集可以识别各个区域。
1.14 Stanford Cars
这里的话Stanford Car数据集包括了196种类的汽车,一共有16185张图片,这里的话我们可以实现对于车辆的品牌,型号甚至是生产年月进行识别。