浅说树的基本性质(中)

树的直径

Q:由n个结点组成的一棵树,求树上最长的路径(树的直径)。(路径上结点数之和)
在学会如何写代码之前,我们要先了解一下树的直径的性质。

  • 1.直径的两端点一定是两个叶子节点。
  • 2.距离任意点最远的点一定是直径的一个端点。

让我们来证明一下上面的两个结论。

命题1:直径的两端点一定是两个叶子节点
我们这里采用反证法,如果直径的两个端点不是叶子结点,那么必然这个节点一定会有孩子节点,那么这样的路程又可以增加一节,所以原直径并不是这棵树的直径,矛盾。
所以直径的两端点一定是叶子结点

命题2:距离任意点最远的点一定是直径的一个端点
我们这里同样采用反证法,如果距离任意点最远的点不是直径的一个端点,那么这里就有两种情况:
我们设当前直径为xy,现有任意点O和另一个点M

情况1:如果O在直径xy上
∵ O M > O X 或 O M > O Y \because OM>OX或OM>OY OM>OXOM>OY
∴ d = O X + O M 或 O Y + O M \therefore d=OX+OM或OY+OM d=OX+OMOY+OM
与条件不符。

情况2:如果O不在直径xy上
∵ O M > O X 或 O M > O Y \because OM>OX或OM>OY OM>OXOM>OY
∴ d = O X + O M + X Y 或 O Y + O M + X Y \therefore d=OX+OM+XY或OY+OM+XY d=OX+OM+XYOY+OM+XY
与条件不符

综上,情况1,2皆不符和题意,所以矛盾,所以距离任意点最远的点一定是直径的一个端点

知道了这两个结论,我们就可以来思考怎么用程序来写了。
首先可以想到,如果我们从任意一个点出发,达到距离它距离最远的点 n n n n n n就一定是直径的一端,此时再从 n n n出发,达到距离 n n n最远的点 m m m m m m就一定也是直径的一端,所以 n m nm nm就是这棵树的直径,基于此,我们就可以采用两次dfs来求得树的直径

#include<bits/stdc++.h>
using namespace std;

vector<int> mp[1000010];
int dis[1000010],st;
void dfs(int x,int fa){
	for (int i=0;i<mp[x].size();i++){
		if (mp[x][i]!=fa){
			dis[mp[x][i]]=dis[x]+1;//距离增加
			if (dis[st]<dis[mp[x][i]])st=mp[x][i];//更新最远的点
			dfs(mp[x][i],x);
		}
	}
}
int main(){
	int n;
	cin>>n;
	for (int i=1;i<n;i++){
		int u,v;
		cin>>u>>v;
		mp[u].push_back(v);
		mp[v].push_back(u);
	}
	dfs(1,0);
	dis[st]=0;
	dfs(st,0);//两次dfs
	cout<<dis[st]+1; 
	return 0;
}

求所有点的最远距离

Q:给你一棵 N(N<=500000)个节点的树,求每个点到其他点的最大距离。

这个问题有一个极为朴素的做法,我们可以去遍历每一个点,找到每一个点最大距离,这样下来的时间复杂度是 O ( n × ( n + m ) ) O(n\times (n+m)) O(n×(n+m)),有点高,那么有没有什么办法可以减小时间复杂度的呢?
刚刚我们知道了树的直径的性质,现在我们就可来利用这些性质。我们知道,距离任意点最远的点一定是直径的一个端点,从这句话我们可以得出,从端点到任意点的距离一定是最长的,所以我们这里就可以从两个端点出发,遍历完所有的点,然后比较两条路径哪个长就可以了

#include<bits/stdc++.h>
using namespace std;

vector<int> mp[500010];
int dis1[500010],dis2[500010],st,ed;
void dfs1(int x,int fa){
	for (int i=0;i<mp[x].size();i++){
		if (mp[x][i]!=fa){
			dis1[mp[x][i]]=dis1[x]+1;
			if (dis1[st]<dis1[mp[x][i]])st=mp[x][i];
			dfs1(mp[x][i],x);
		}
	}
}

void dfs2(int x,int fa){
	for (int i=0;i<mp[x].size();i++){
		if (mp[x][i]!=fa){
			dis1[mp[x][i]]=dis1[x]+1;
			dfs2(mp[x][i],x);
		}
	}
}

void dfs3(int x,int fa){
	for (int i=0;i<mp[x].size();i++){
		if (mp[x][i]!=fa){
			dis2[mp[x][i]]=dis2[x]+1;
			dfs3(mp[x][i],x);
		}
	}
}
int main(){
	int n;
	scanf("%d",&n);
	for (int i=1;i<n;i++){
		int u,v;
		scanf("%d %d",&u,&v);
		mp[u].push_back(v);
		mp[v].push_back(u);
	}
	dfs1(1,0);
	ed=st;
	dis1[st]=0;
	dfs1(st,0);
	memset(dis1,0,sizeof(dis1));
	dfs2(st,0);
	dfs3(ed,0);
	for (int i=1;i<=n;i++){
		printf("%d\n",max(dis1[i],dis2[i]));
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值