LeetCode---2021/7/17

颠倒二进制位

在这里插入图片描述
分析:
  c++的bitset中封装了对二进制的操作:构造函数可以直接将整型转为其二进制表示,to_string()可将其二进制转为字符串形式,to_ulong()转为整数形式。
代码:

class Solution {
public:
    uint32_t reverseBits(uint32_t n) {
        bitset<32> x(n);
        string s = x.to_string();
        reverse(s.begin(), s.end());
		bitset<32> y(s);
        uint32_t res = y.to_ulong();
        return res;
    }
};

只出现一次的数

在这里插入图片描述
分析:
  两个相同的数异或为0,任何数与0异或为本身,所以数组中所有数的异或即为只出现一次的数。
代码:

class Solution {
public:
    int singleNumber(vector<int>& nums) {
        int ret = 0;
        for (auto e: nums) ret ^= e;
        return ret;
    }
};

位1的个数

在这里插入图片描述
方法一:
  同样利用bitset,将其二进制表示转为字符串形式,然后统计其中1的个数。
代码:

class Solution {
public:
    int hammingWeight(uint32_t n) {
        bitset<32> x(n);
        int res = 0;
        string s = x.to_string();
        for(int i = 0; i < 32; i++) {
            if(s[i] == '1') {
                res++;
            }
        }
        return res;
    }
};

方法二:
  n & (n - 1)其运算结果恰为把n的二进制位中的最低位的1变为0之后的结果,所以依次将n的最低位的1变为0,在这个过程中计数,直到n为0即可。
代码:

class Solution {
public:
    int hammingWeight(uint32_t n) {
        int ret = 0;
        while (n) {
            n &= n - 1;
            ret++;
        }
        return ret;
    }
};

2的幂

在这里插入图片描述
分析:
  这里直接参考官方的题解,核心是:n如果是2的幂,则n是正整数并且n的二进制表示中只有1个1。第一个方法采用了前面提到的n & (n - 1),该式可以将n最低位的1变成0,如果最低位变成0后n为0,则n满足要求。第二个方法采用了n & -n,该式可以直接获取到最低位的1,实际上就是n的最高位,如果n & -n后n不变,则n满足要求。
在这里插入图片描述
在这里插入图片描述
代码:

class Solution {
public:
    bool isPowerOfTwo(int n) {
        return n > 0 && (n & (n - 1)) == 0;
    }
};
class Solution {
public:
    bool isPowerOfTwo(int n) {
        return n > 0 && (n & -n) == n;
    }
};

组合

在这里插入图片描述
分析:
  典型的dfs例题。
代码:

class Solution {
public:
    vector<int> temp;
    vector<vector<int>> ans;
    void dfs(int cur, int n, int k) {
        if(temp.size() + (n - cur + 1) < k) {
            return;
        }
        if(temp.size() == k) {
            ans.push_back(temp);
            return;
        }
        temp.push_back(cur);
        dfs(cur + 1, n, k);
        temp.pop_back();
        dfs(cur + 1, n, k);
    }
    vector<vector<int>> combine(int n, int k) {
        dfs(1, n, k);
        return ans;
    }
};

全排列

在这里插入图片描述
方法一:
  c++的next_permutation()封装了全排列的实现,注意使用前先排序。
代码:

class Solution {
public:
    vector<vector<int>> permute(vector<int>& nums) {
        vector<vector<int>> res;
        sort(nums.begin(), nums.end());
        do {
            res.push_back(nums);
        }while(next_permutation(nums.begin(), nums.end()));
        return res;
    }
};

方法二:
  采用dfs。
代码:

class Solution {
public:
    void dfs(int cur, vector<int>& temp, vector<vector<int>>& res, vector<int>& used, vector<int>& nums) {
        if(cur == nums.size()) {
            res.push_back(temp);
            return;
        }
        for(int i = 0; i < nums.size(); i++) {
            if(used[i] == 0) {
                used[i] = 1;
                temp.push_back(nums[i]);
                dfs(cur + 1, temp, res, used, nums);
                temp.pop_back();
                used[i] = 0;
            }
        }
    }
    
    vector<vector<int>> permute(vector<int>& nums) {
        int n = nums.size();
        vector<int> temp;
        vector<vector<int>> res;
        if(n == 0) {
            return res;
        }
        vector<int> used(n, 0);
        dfs(0, temp, res, used, nums);
        return res;
    }
};

字母大小写全排列

在这里插入图片描述
分析:
  简单的模拟题。
代码:

class Solution {
public:
    
    vector<string> letterCasePermutation(string s) {
        vector<string> res;
        for(int i = 0; i < s.size(); i++) {
            if(s[i] >= '0' && s[i] <= '9') {
                if(res.empty()) {
                    string temp = "";
                    temp += s[i];
                    res.push_back(temp);
                }else {
                    for(int j = 0; j < res.size(); j++) {
                        res[j].push_back(s[i]);
                    }
                }
            }else {
                //复制两份
                int n = res.size();
                char s1 = tolower(s[i]), s2 = toupper(s[i]);
                if(n == 0) {
                    string temp = "";
                    res.push_back(temp + s1);
                    res.push_back(temp + s2);
                    continue;
                }
                vector<string> test;
                for(int j = 0; j < n; j++) {
                    string temp = res[j];
                    test.push_back(temp + s1);
                    test.push_back(temp + s2);
                }
                res = test;
            }
        }
        return res;
    }
};

打家劫舍

在这里插入图片描述
分析:
  动态规划,设dp[i]表示房间数为i时的最优解。边界条件:如果只有一个房间,则只能选择偷窃此房间,即dp[0] = nums[0];如果有两个房间,由于不能偷窃连续房间,则dp[1]为max(nums[0], nums[1]);如果房间数大于2,对于第i个房间,可以选择不偷窃,即dp[i] = dp[i-1],也可以选择偷窃,由于不能偷窃连续房间,则dp[i] = dp[i - 2] + nums[i]。
代码:

class Solution {
public:
    int rob(vector<int>& nums) {
        if (nums.empty()) {
            return 0;
        }
        int size = nums.size();
        if (size == 1) {
            return nums[0];
        }
        vector<int> dp = vector<int>(size, 0);
        dp[0] = nums[0];
        dp[1] = max(nums[0], nums[1]);
        for (int i = 2; i < size; i++) {
            dp[i] = max(dp[i - 2] + nums[i], dp[i - 1]);
        }
        return dp[size - 1];
    }
};

三角形最小路径和

在这里插入图片描述
分析:
  动态规划,比较简单,不再分析。
代码:

class Solution {
public:
    int minimumTotal(vector<vector<int>>& triangle) {
        int m = triangle.size();
        vector<vector<int>> f(m, vector<int>(m, 0));
        f[0][0] = triangle[0][0];
        for(int i = 1; i < m; i++) {
            f[i][0] = f[i - 1][0] + triangle[i][0];
            f[i][i] = f[i - 1][i - 1] + triangle[i][i];
        }
        for(int i = 0; i < m; i++) {
            for(int j = 0; j < i; j++) {
                if(j == 0 || i == j) {
                    continue;
                }else {
                    f[i][j] = min(f[i - 1][j], f[i - 1][j - 1]) + triangle[i][j];
                }
            }
        }
        return *min_element(f[m - 1].begin(), f[m - 1].end());
    }
};

填充每个节点的下一个右侧节点指针

在这里插入图片描述
分析:
  层序遍历(与层次遍历不同):采用bfs,每次将同一层中的所有节点取出,然后进行链接。
代码:

/*
// Definition for a Node.
class Node {
public:
    int val;
    Node* left;
    Node* right;
    Node* next;

    Node() : val(0), left(NULL), right(NULL), next(NULL) {}

    Node(int _val) : val(_val), left(NULL), right(NULL), next(NULL) {}

    Node(int _val, Node* _left, Node* _right, Node* _next)
        : val(_val), left(_left), right(_right), next(_next) {}
};
*/

class Solution {
public:
    Node* connect(Node* root) {
        if (root == nullptr) {
            return root;
        }
        queue<Node*> Q;
        Q.push(root);
        while (!Q.empty()) {
            // 记录当前队列大小
            int size = Q.size();
            // 遍历这一层的所有节点
            for(int i = 0; i < size; i++) {
                Node* node = Q.front();
                Q.pop();
                // 连接
                if (i < size - 1) {
                    node->next = Q.front();
                }
                if (node->left != nullptr) {
                    Q.push(node->left);
                }
                if (node->right != nullptr) {
                    Q.push(node->right);
                }
            }
        }
        return root;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Cyril_KI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值