Practice
文章平均质量分 59
机器学习、深度学习、数据挖掘实战
Cyril_KI
本科 华北电力大学-计算机科学与技术-负荷预测-联邦学习|研二 天津大学-图神经网络-舆论场-社交网络挖掘
展开
-
粒子群算法(PSO)的Python实现(求解多元函数的极值)
PSO是寻优算法中比较简单的一种,本文用Python简单实现了PSO算法,用来求解一个五元函数的最大值,并与MATLAB的fmincon函数的运行结果做比较。原创 2020-09-14 22:05:51 · 115949 阅读 · 26 评论 -
机器学习之linear_model(普通最小二乘法手写+sklearn实现+评价指标)
y=wi*xi+b,基于最小二乘法的线性回归:寻找参数w和b,使得w和b对x_test_data的预测值y_pred_data与真实的回归目标y_test_data之间的均方误差最小。原创 2020-06-25 21:34:39 · 100097 阅读 · 2 评论 -
机器学习之K_means(附简单手写代码)
聚类是一个将数据集中在某些方面相似的数据成员进行分类组织的过程,聚类就是一种发现这种内在结构的技术,聚类技术经常被称为无监督学习。k均值聚类是最著名的划分聚类算法,由于简洁和效率使得他成为所有聚类算法中最广泛使用的。给定一个数据点集合和需要的聚类数目k,k由用户指定,k均值算法根据某个距离函数反复把数据分入k个聚类中。......原创 2020-07-05 21:14:20 · 101692 阅读 · 0 评论 -
机器学习之linear_model(Ridge Regression)
这里先解释一下过拟合与欠拟合的概念。所谓过拟合,是指模型学习能力过于强大,把训练样本中某些不太具有一般性的特征都学到了。例如判断一个人是否是好人,训练样本中所有好人都或多或少做过一些坏事,模型学到了这一特征,把这一模型运用到了实际预测中去,这明显是有失偏颇的,因为一个人是否是好人理论上跟一个人是否做过坏事是不相关的。所谓欠拟合,是指模型学习能力低下,连训练集中的数据都不能很好的拟合,比如说我要预测一个人是否是坏人,模型只考虑到了他是否做过坏事,这明显是考虑不全的,做过坏事不一定就是坏人,那么显然这原创 2020-06-26 14:04:39 · 98837 阅读 · 0 评论 -
Python处理Les Misérables network并利用networkx画图
Python处理Les Misérables network并利用networkx画图原创 2021-12-16 11:58:05 · 4691 阅读 · 0 评论 -
利用node2vec和k-means对图数据进行节点聚类分析
利用node2vec和k-means对图数据进行节点聚类分析原创 2021-12-18 23:47:18 · 4611 阅读 · 2 评论 -
节点聚类分析:DeepWalk + K-means
节点聚类分析:DeepWalk + K-means原创 2021-12-19 12:30:30 · 4949 阅读 · 0 评论 -
手写KNN识别MNIST数据集(PyTorch读入数据)
手写KNN识别MNIST数据集(PyTorch读入数据)原创 2022-01-07 23:02:28 · 4092 阅读 · 0 评论 -
决策树识别MNIST数据集
决策树识别MNIST数据集原创 2022-01-08 11:05:37 · 3286 阅读 · 0 评论 -
联邦学习基本算法FedAvg的代码实现
联邦学习基本算法FedAvg的代码实现原创 2022-01-13 11:40:19 · 15353 阅读 · 6 评论 -
node2vec代码实现及详细解析
node2vec代码实现及详细解析原创 2021-12-18 12:17:15 · 11657 阅读 · 27 评论 -
CNN简单实战:PyTorch搭建CNN对猫狗图片进行分类
上一篇文章介绍了使用pytorch的Dataset和Dataloader处理图片数据,现在就用处理好的数据对搭建的CNN进行训练以及测试。原创 2020-08-21 20:04:44 · 138320 阅读 · 85 评论 -
CNN训练前的准备:PyTorch处理自己的图像数据(Dataset和Dataloader)
pytorch的torchvision给我们提供了很多已经封装好的数据集,但是我们经常得使用自己找到的数据集,因此,想要得到一个好的训练结果,合理的数据处理是必不可少的。原创 2020-08-19 14:15:27 · 129164 阅读 · 48 评论 -
手写神经网络识别MNIST数据集(pytorch读入数据)
用pytorch导入MNIST数据集,然后手写BP神经网络实现对数据集的识别预测。原创 2020-08-16 11:46:47 · 105521 阅读 · 0 评论 -
使用hmmlearn中的MultinomialHMM实现中文分词
使用hmmlearn中的MultinomialHMM实现中文分词。原创 2020-08-10 12:12:36 · 101337 阅读 · 2 评论 -
对给定数据集分别实现k-means聚类、dbscan聚类以及agnes聚类
三大聚类K-means、dbscan以及agnes的简单原理介绍以及简单实现原创 2020-08-10 11:01:27 · 105677 阅读 · 4 评论 -
手写SVM(SMO)实现对指定数据集的分类
本篇博客主要是对SVM系列学习的一个实践。手写SVM来简单地对指定数据集进行分类预测。原创 2020-08-08 21:43:51 · 106881 阅读 · 9 评论 -
基于梯度下降的逻辑回归(Logistics Regression)实现对马疝病数据集(horseColic)的分类预测
逻辑回归作业:基于梯度下降的逻辑回归(Logistics Regression)实现对马疝病数据集(horseColic)的分类预测。原创 2020-08-03 21:50:07 · 100768 阅读 · 0 评论 -
利用PCA对半导体制造数据(secom.data)进行降维
利用PCA对半导体制造数据(1567 X 590)进行降维。原创 2020-08-01 17:22:46 · 102400 阅读 · 7 评论 -
使用KNN识别MNIST手写数据集(手写,不使用KNeighborsClassifier)
KNN识别MNIST手写数据集(32*32维),根据KNN原理一步步实现。原创 2020-07-31 23:05:07 · 100930 阅读 · 1 评论 -
利用XGBoost实现对鸢尾花数据集(Iris.csv)的分类预测
利用XGBoost实现对鸢尾花数据集(Iris.csv)的分类预测原创 2020-07-29 11:47:56 · 101944 阅读 · 6 评论 -
利用AdaBoost对马疝病数据集(horseColic)进行分类预测
利用AdaBoost对马疝病数据集(horseColic)进行分类预测原创 2020-07-29 11:41:55 · 101840 阅读 · 0 评论 -
使用决策树(decision-tree)预测隐形眼镜类型(标签二值化(LabelBinarizer)复原输出)
使用决策树(decision-tree)预测隐形眼镜类型(标签二值化(LabelBinarizer)复原输出)原创 2020-07-28 23:11:07 · 99848 阅读 · 0 评论 -
利用朴素贝叶斯(Naive Bayes)原理进行垃圾邮件过滤(编程实现)
利用朴素贝叶斯(Naive Bayes)原理对垃圾邮件进行过滤。原创 2020-07-26 22:26:43 · 101332 阅读 · 10 评论 -
朴素贝叶斯(Naive Bayes)原理+编程实现拉普拉斯修正的朴素贝叶斯分类器
朴素贝叶斯(Naive Bayes)原理+编程实现拉普拉斯修正的朴素贝叶斯分类器,以西瓜数据集3.0为训练集,对“测1”样本进行判别。原创 2020-07-22 20:39:16 · 133424 阅读 · 14 评论