外观数列是指具有以下特点的整数序列:
d, d1, d111, d113, d11231, d112213111, ...
它从不等于 1 的数字 d 开始,序列的第 n+1 项是对第 n 项的描述。比如第 2 项表示第 1 项有 1 个 d,所以就是 d1;第 2 项是 1 个 d(对应 d1)和 1 个 1(对应 11),所以第 3 项就是 d111。又比如第 4 项是 d113,其描述就是 1 个 d,2 个 1,1 个 3,所以下一项就是 d11231。当然这个定义对 d = 1 也成立。本题要求你推算任意给定数字 d 的外观数列的第 N 项。
输入格式:
输入第一行给出 [0,9] 范围内的一个整数 d、以及一个正整数 N(≤ 40),用空格分隔。
输出格式:
在一行中给出数字 d 的外观数列的第 N 项。
输入样例:
1 8
输出样例:
1123123111
思路比较简单,用数组存放数据,按照习惯来读,然后把得出的结果存入另外一个临时数组
#include<stdio.h>
#include<string.h>
int main()
{
int num;
char str1[100000];
char str2[100000];
scanf("%s %d",str1,&num);
int i;
for(i=1;i<num;i++){
strcpy(str2,str1);
int j=0;
int k=0;
while(j < strlen(str2) ){
int count=0;
str1[k++]=str2[j++];
count++;
while(str2[j]==str2[j-1]){
j++;
count++;
}
str1[k]=count+'0';
k++;
}
}
puts(str1);
return 0;
}
这样的方法可以通过前面三个实例,但是第四个测试点超时,原因是当次数是40次的时候数组会很大,会很费时间,所以一开始的数组需要设置得比较大,其次是要注意循环的时间。一开始用的是strcpy每次都将数组复制到临时数组中,然后每次操作都是对临时数组操作,这样就每次循环都耗费了复制的时间,容易超时,后来经过改进,测试点四也通过了。
#include<stdio.h>
#include<string.h>
int copy(char *str1,char* str2){
int j=0;
int k=0;
while(j < strlen(str2) ){
int count=0;
str1[k++]=str2[j++];
count++;
while(str2[j]==str2[j-1]){
j++;
count++;
}
str1[k]=count+'0';
k++;
}
return 0;
}
int main()
{
int num;
char str1[100000];
char str2[100000];
scanf("%s %d",str1,&num);
int i;
for(i=1;i<num;i++){
i%2 ? copy(str2,str1) : copy(str1,str2);
}
puts(i % 2 ? str1 : str2);
return 0;
}