解析:本题大整数乘法,难点在于连续进位的处理
第一种解法:
例如123×456,根据乘法的运算,得知
- 3×6的起始数位是个位,而2×6的起始数位为十位,1×6的起始数位百位,观察发现,若用i表示123的索引,j表示456的索引,则当前两个数相乘的结果的当前数位为(i+j)
- 连续进位的处理,由于这里使用字符表示当前的结果,则出现结果大于或等于10,就要进位,由于采用单个字符只能表示0-9的数字,故还需进一步判断高位是否也存在进位,即9999+90,当前十位进位,导致后面百位和千位也会发生进位,所以也要进行处理。当然如果这里能用整形的变量表示就无须考虑
class Solution {
public:
string multiply(string num1, string num2) {
string res = "";
if (num1 == "0" || num2 == "0") return "0";
if (num1.length() > num2.length()) swap(num1, num2);
reverse(num1.begin(), num1.end()); //字符串翻转,保证从低位开始相乘
reverse(num2.begin(), num2.end());
for (int i = 0; i < num1.length(); ++i){
for (int j = 0; j < num2.length(); ++j){
int k = i + j;
int current = (num1[i]-'0') * (num2[j]-'0'); //计算数位相乘
if (k >= res.length()){ //当前是最高位
res += to_string(current % 10);
if (current >= 10) res += to_string(current / 10);
continue;
}
current += (res[k] - '0'); //字符—>数字
res[k] = (current % 10) + '0'; //当前位
bool flag = false;
while (current >= 10){ //考虑多次进位,例如9999+90
res[k] = (current % 10) + '0';
if (++k >= res.length()){
flag = true;
res += to_string(current / 10);
break;
}
current = current / 10 + (res[k] - '0'); //进制位
}
if (flag == false) res[k] = (current + '0');
}
}
reverse(res.begin(), res.end()); //翻转得到正常的顺序
return res;
}
};
第二种解法
该解法无需考虑每次都要处理连续进位,采用整形变量代替字符存储结果,即采用vector数组存储结果,例如999×11,当出现999+90时,当前vector[1] = 8,而vector[2] = 10,然后在下一位9*10的时候再进行处理vector[2],就可以避免多次处理连续进位的情况。
class Solution {
public:
string multiply(string num1, string num2) {
int m = num1.length();
int n = num2.length();
string str_res = "";
vector<int> res(m + n, 0);
for (int i = m - 1; i >= 0; --i){
for (int j = n - 1; j >= 0; --j){
int mul = (num1[i]-'0') * (num2[j]-'0');
int current_index = i + j;
mul += res[current_index+1];
res[current_index+1] = mul % 10;
res[current_index] += mul / 10;
}
}
for (int i = 0; i < res.size(); ++i){
if (!str_res.empty() || res[i] != 0) str_res.push_back(res[i] + '0');
}
return str_res.empty() ? "0" : str_res;
}
};