在音乐专辑数据分析中,经常需要对专辑数据进行分类和聚类。专辑数据通常包含专辑名称、艺术家、流派、发行日期等信息。为了提高分类和聚类的准确性,需要对专辑数据进行相似性计算。举例来说,假设有一个包含 14,000 个专辑数据的列表 listcdtitles
,需要将这些专辑数据按照相似性聚合在一起。
解决方案:
为了计算专辑数据的相似性,采用了以下方法。
首先清洗数据,将专辑名称中的特殊字符和标点符号去除,并将数据转化为小写形式。然后遍历整个专辑名称列表,将每个专辑名称分解成单词列表。将这些单词列表存储到字典中,其中键是专辑名称,值是单词列表。接着,针对这些单词列表,构建一个相似度矩阵:如果两个专辑名称的单词列表中具有相同的单词,则在相似度矩阵中将这两个专辑名称对应的单元格值加 1。
相似度矩阵构建完成后,即可根据相似度矩阵对专辑数据进行聚合。可以使用聚类算法(例如 K-Means 聚类算法)将专辑数据聚合到不同的簇中。同一簇中的专辑数据具有较高的相似性。
代码例子:
import re
import numpy as np
# 清洗数据
def clean_data(data):
data = data.lower()
data = re.sub(r'[^\w ]', '', data)
return data
# 将专辑名称分解成单词列表
def tokenize(data):
tokens = data.split()
return tokens
# 计算相似度矩阵
def compute_similarity_matrix(data):