介绍几个简单的图片数据增强方法,组合一下大概可以扩大个几倍,满足简单的数据增强需求。
环境
Python3.6
OpenCV
旋转后按原图裁剪
新生成的图形状与原图相同,多余的部分裁掉,缺少的部分用纯色填补。我做数据增强不太使用各个角度都转一遍、放大缩小这种,所以用这个函数比较少,一般就用来做180度旋转,形状也不会变,坐标转换很方便。
def rotate(image, angle, center=None, scale=1.0):
# image是图像的矩阵,angle是旋转角度,center是旋转中心像素坐标
(h, w) = image.shape[:2]
if center is None:
center = (w / 2, h / 2)
M = cv2.getRotationMatrix2D(center, angle, scale) #得到变换矩阵
rotated = cv2.warpAffine(image, M, (w, h))
return rotate
重点介绍一下cv2.warpAffine函数,一般这个函数写三个参数,但是因为旋转后形状与原图有区别,因此需要对缺失的部分进行像素填充。默认值为黑色,可以通过设置参数来修改。例如,cv2.warpAffine(image, M, (w, h),borderValue=(255,255,255))
优点:旋转很灵活,可以各种旋转跳跃。
缺点:形状经过裁剪?有点担心特征被一剪梅
坐标转换