题意
把一堆浮点数分成两部分,要使得两部分的差值尽量小,小于总大小的2%
分析
由于有2%的限制,将浮点数转成百分比,再同时扩大10000倍,就转成背包问题:判定分成两部分,其中有一部分大小=i的方案是否存在
最后枚举i,另一部分一定约等于i,这样找到min{sumw-2*i|opt[i]}的i,注意DP时记录方案
输出时沿着方案走即可
注意:此题用bitset实现会超时,要采用bool数组
代码
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<bitset>
using namespace std;
const int INF=0x3f3f3f3f,MAXM=30000,MAXN=200;
const double POW=10000.0;
int last[MAXM+3],n,w[MAXN+3],mw;
//bitset<MAXM+3> opt;
bool opt[MAXM+3];
double sum,a[MAXN+3];
bool input(){
scanf("%d",&n);
if(n==0)return false;
sum=0;mw=0;
for(int i=1;i<=n;i++){
scanf("%lf",&a[i]);
sum+=a[i];
}
for(int i=1;i<=n;i++){
w[i]=int(a[i]*POW/sum);
mw+=w[i];
}
return true;
}
int dp(){
memset(last,0,sizeof(last));
//opt=0;opt[0]=1;
memset(opt,0,sizeof(opt));opt[0]=1;
for(int i=1;i<=n;i++){
for(int j=mw;j>=w[i];j--){
if(!opt[j]&&opt[j-w[i]]){
opt[j]=1;last[j]=i;
}
}
}
int ans=INF,rel=0;
for(int i=1;i<=mw;i++){
if(opt[i]&&abs(mw-(i<<1))<ans){
ans=abs(mw-(i<<1));
rel=i;
}
}
return rel;
}
void output(int x){
if(!x)return;
output(x-w[last[x]]);
printf("%d ",last[x]);
}
int main(){
while(input()){
output(dp());
puts("");
}
return 0;
}