[AGC06D] Median Pyramid Hard

AGC06D

题解:
由于求的是中位数,和数的大小关系有关,则可以二分答案,然后将所有大于等于当前二分的数的刷成 1 1 ,小于的刷成0,然后根据 01 01 算出的答案调整二分区间。(套路)
然后问题就被简化成了给 2n1 2 n − 1 个数,每个数是0或1,求第一层的数。
令这 2n1 2 n − 1 个数是 b1,b2,,b2n1 b 1 , b 2 , ⋯ , b 2 n − 1
随便找一个稍微长一点的01串就能发现:
1. 如果有连续的0或者1,令这个0,1区间是 [l,r] [ l , r ] (r>l) ( r > l ) ,则显然可以发现无论在那一层 [l,r] [ l , r ] 的数不会变。 所以如果 bn=bn+1 b n = b n + 1 或者 bn=bn1 b n = b n − 1 ,则第一层的数就是 bn b n .
2. 如果有一段区间 [l,r](r>l) [ l , r ] ( r > l ) 满足 bibi+1(li<r) b i ≠ b i + 1 ( l ≤ i < r ) 且( l=1 l = 1 bl=bl1 b l = b l − 1 )且 ( r=2n1 r = 2 n − 1 br=br+1 b r = b r + 1 ) ,那么向上推一层的时候,整个 [l,r] [ l , r ] 区间里的数会取反。这个区间对第一层有贡献当且今当 l=1,r=2n1 l = 1 , r = 2 n − 1 . 证明是显然的,因为每向上推一层区间的长度都会减少 2 2 .
如果不满足bn=bn+1或者 bn=bn1 b n = b n − 1 , 则 bn b n 一定存在于一个上述区间 [l0,r0] [ l 0 , r 0 ] ,此时如果 nl0<r0n n − l 0 < r 0 − n 则最终第一层的数就是 bl01 b l 0 − 1 ,否则就是 br0+1 b r 0 + 1 .(当 nl0=r0n n − l 0 = r 0 − n 时一定有 bl01=br0+1 b l 0 − 1 = b r 0 + 1 ) 特殊处理 l0=1,r0=2n1 l 0 = 1 , r 0 = 2 n − 1 的情况即可.

时间复杂度 O(nlogn) O ( n l o g n )
写出来也就 30 30 行的样子。。

代码:

#include<bits/stdc++.h>
#define LL long long
#define ull unsigned long long
#define ULL ull
#define mp make_pair
#define pii pair<int,int>
#define piii pair<int, pii >
#define pll pair <ll,ll>
#define pb push_back
#define big 20160116
#define INF 2147483647
#define pq priority_queue
#define rank rk124232
#define y1 y20160116
#define y0 y20160110
using namespace std;
inline int read(){
    int x=0,f=1;
    char ch=getchar();
    while (ch<'0'||ch>'9'){if(ch=='-') f=-1;ch=getchar();}
    while (ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
    return x*f;
}
namespace Mymath{
    LL qp(LL x,LL p,LL mod){
        LL ans=1;
        while (p){
            if (p&1) ans=ans*x%mod;
            x=x*x%mod;
            p>>=1;
        }
        return ans;
    }
    LL inv(LL x,LL mod){
        return qp(x,mod-2,mod);
    }
    LL C(LL N,LL K,LL fact[],LL mod){
        return fact[N]*inv(fact[K],mod)%mod*inv(fact[N-K],mod)%mod;
    }
    template <typename Tp> Tp gcd(Tp A,Tp B){
        if (B==0) return A;
        return gcd(B,A%B);
    }
    template <typename Tp> Tp lcm(Tp A,Tp B){
        return A*B/gcd(A,B);
    }
};
namespace fwt{
    using namespace Mymath;
    void FWT(int a[],int n,LL mod)
    {
        for(int d=1;d<n;d<<=1)
            for(int m=d<<1,i=0;i<n;i+=m)
                for(int j=0;j<d;j++)
                {
                    int x=a[i+j],y=a[i+j+d];
                    a[i+j]=(x+y)%mod,a[i+j+d]=(x-y+mod)%mod;
                    //xor:a[i+j]=x+y,a[i+j+d]=x-y;
                    //and:a[i+j]=x+y;
                    //or:a[i+j+d]=x+y;
                }
    }

    void UFWT(int a[],int n,LL mod)
    {
        LL rev=inv(2,mod);
        for(int d=1;d<n;d<<=1)
            for(int m=d<<1,i=0;i<n;i+=m)
                for(int j=0;j<d;j++)
                {
                    int x=a[i+j],y=a[i+j+d];
                    a[i+j]=1LL*(x+y)*rev%mod,a[i+j+d]=(1LL*(x-y)*rev%mod+mod)%mod;
                    //xor:a[i+j]=(x+y)/2,a[i+j+d]=(x-y)/2;
                    //and:a[i+j]=x-y;
                    //or:a[i+j+d]=y-x;
                }
    }
    void solve(int a[],int b[],int n,LL mod)
    {
        FWT(a,n,mod);
        FWT(b,n,mod);
        for(int i=0;i<n;i++) a[i]=1LL*a[i]*b[i]%mod;
        UFWT(a,n,mod);
    }
};
const int Maxn=2e5+5;
int a[Maxn];
int b[Maxn];
int n;
int check(int v){
    for (int i=1;i<=2*n-1;i++) b[i]=(a[i]>=v)?1:0;
    if (b[n]==b[n+1] || b[n-1]==b[n]){
        return b[n];
    }
    for (int l=n,r=n;l>=1;l--,r++){
        if (b[l]==b[l+1]){
            return b[l];
        }
        if (b[r]==b[r-1]){
            return b[r];
        }
    }
    return b[n]^(n&1)^1;
}
int main(){
    n=read();
    for (int i=1;i<=2*n-1;i++) a[i]=read();
    int lo=1,hi=2*n;
    while (hi-lo>1){
        int mid=lo+hi>>1;
        if (check(mid)){
            lo=mid;
        }
        else{
            hi=mid;
        }
    }
    printf("%d\n",lo);
    return 0;
} 
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值