- 博客(5)
- 收藏
- 关注
原创 Pytorch框架下yolo环境搭建
摘要:本文详细介绍了在Windows系统下安装CUDA 11.8和cuDNN 8.9.7的完整流程,包括版本选择、安装步骤和环境验证。同时讲解了如何通过Anaconda创建Python 3.9环境并安装对应版本的PyTorch框架,最后演示了YOLO模型的安装及在PyCharm中的环境配置和测试运行过程。文中提供了从GPU驱动检查到深度学习环境搭建的完整解决方案,适合需要配置深度学习开发环境的用户参考。
2025-07-27 17:14:04
988
1
原创 windows系统下PaddleOCR的环境搭建(GPU版)
本文介绍了CUDA和cuDNN的安装配置以及PaddleOCR环境搭建过程。首先详细说明了CUDA 11.8和cuDNN 8.9.7的安装步骤及验证方法,强调版本匹配的重要性。然后指导如何在Anaconda中创建Python 3.9的PaddlePaddle环境并安装相应版本的PaddlePaddle-gpu。最后介绍PaddleOCR的安装验证,包括在PyCharm中配置环境并运行OCR测试代码的完整流程。整个安装过程涉及GPU驱动、深度学习框架和OCR工具链的配置,为开发者提供了完整的深度学习OCR开发
2025-07-26 09:48:50
1242
原创 windows系统下ffmpeg的安装和使用(视频切帧)
FFmpeg是一款开源多媒体处理工具,支持音视频编解码、转码和流媒体处理。安装步骤:1)下载Windows版压缩包并解压;2)将bin目录添加到系统环境变量;3)验证安装成功。切帧基本命令:通过-i指定输入文件,-r设置帧率,-q:v控制画质,-ss/-to定义时间范围,输出格式为%d.jpg自动编号。例如:ffmpeg -i input.mp4 -r 10 -q:v 1 output_folder\%d.jpg可提取视频帧为JPG图片。
2025-07-12 09:00:00
474
原创 windows系统下LabelMe的安装和使用
LabelMe是由MIT开发的图像标注工具,支持目标检测、语义分割等任务。安装步骤:1)创建Python3.9的conda环境;2)激活环境后pip安装LabelMe;3)输入labelme启动。使用时可打开单个图片或文件夹进行矩形/多边形标注,标注结果保存为JSON格式。常用快捷键包括A/D切换图片、Ctrl+R创建矩形框、Ctrl+S保存等。该工具适用于计算机视觉研究的数据标注工作。
2025-07-11 22:07:23
379
原创 windows系统下anaconda的安装和使用
Anaconda是一款专为数据科学设计的Python/R平台,集成了包管理、环境隔离和科学计算库。安装过程包括下载安装包、设置环境变量等步骤。常用操作包括创建虚拟环境(conda create -n env_name python=3.x)、管理包(conda list/install)、使用清华镜像加速下载等。Anaconda解决了多项目版本冲突问题,简化了开发环境配置,是机器学习、数据分析的高效工具。
2025-07-11 09:45:18
677
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人