含噪学习 --《Learning from Noisy Labels with Deep Neural Networks: A Survey》
文章链接:https://arxiv.org/pdf/2007.08199.pdf
1. 噪声标签的来源
人工标注时的错误标注; 利用一些方法制作标签时由于具有类似特征产生的噪声标签等
2. 噪声标签类型
2.1 与实例无关的标签噪声
假定在给定真实标签的情况下,噪声的产生与数据特征无关:通过噪声转移矩阵T建模,定义
T i j = P ( y ~ = j ∣ y = i ) T_{ij} = P(\tilde{y} = j\mid y =i) Tij=P(y~=j∣y=i)
即真实标签i被误标为j的概率。
-
对称噪声:标签被随机翻转到其他类别,翻转概率相等。噪声率为τ,矩阵定义为:
T i i = 1 − τ , T i j = τ c − 1 ( i ≠ j ) T_{ii} = 1 - \tau, T_{ij} = \frac{\tau}{c-1} (i\neq j) Tii=1−τ,Tij=c−1