含噪学习 --《Learning from Noisy Labels with Deep Neural Networks: A Survey》

含噪学习 --《Learning from Noisy Labels with Deep Neural Networks: A Survey》

文章链接:https://arxiv.org/pdf/2007.08199.pdf

1. 噪声标签的来源

人工标注时的错误标注; 利用一些方法制作标签时由于具有类似特征产生的噪声标签等

2. 噪声标签类型

2.1 与实例无关的标签噪声

假定在给定真实标签的情况下,噪声的产生与数据特征无关:通过噪声转移矩阵T建模,定义
T i j = P ( y ~ = j ∣ y = i ) T_{ij} = P(\tilde{y} = j\mid y =i) Tij=P(y~=jy=i)
即真实标签i被误标为j的概率。

  • 对称噪声:标签被随机翻转到其他类别,翻转概率相等。噪声率为τ,矩阵定义为:
    T i i = 1 − τ , T i j = τ c − 1 ( i ≠ j ) T_{ii} = 1 - \tau, T_{ij} = \frac{\tau}{c-1} (i\neq j) Tii=1τ,Tij=c1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值