最长子序列——动态规划

动态规划算法通常用于求解具有某种最优性质的问题。动态规划算法与分治法类似,其基本思想也是将待求解问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解。与分治法不同的是,适合于用动态规划求解的问题,经分解得到子问题往往不是互相独立的。若用分治法来解这类问题,则分解得到的子问题数目太多,有些子问题被重复计算了很多次。如果我们能够保存已解决的子问题的答案,而在需要时再找出已求得的答案,这样就可以避免大量的重复计算,节省时间。我们可以用一个表来记录所有已解的子问题的答案。不管该子问题以后是否被用到,只要它被计算过,就将其结果填入表中。这就是动态规划法的基本思路。

具体到最长子序列而言:

分治法不断地将总序列分解为若干个子序列——总问题→(若干个与之相关的可能重叠的)子问题。子序列的取值取决于上一次分解时给定的参数,因此会有部分子序列重叠,也有部分子序列并不涉及。动态规划则是计算出所有不重复的子序列,而后再根据DP表转移关系采用递归分解总序列,总问题→独立子问题。

递推公式如下:

 

(1)创建DP表,其中应包括状态值及转移关系。

def lcs(a, b):
    lena = len(a)
    lenb = len(b)
    chess = [[['', 0] for j in range(lenb + 1)] for i in range(lena + 1)]
    for i in range(1, lena + 1):
        for j in range(1, lenb + 1):
            if a[i - 1] == b[j - 1]:
                chess[i][j][1] = chess[i-1][j-1][1] + 1
                chess[i][j][0] = 'ok'
            elif chess[i-1][j][1] > chess[i][j-1][1]:
                chess[i][j][1] = chess[i-1][j][1]
                chess[i][j][0] = 'up'
            else:
                chess[i][j][1] = chess[i][j-1][1]
                chess[i][j][0] = 'left'
    for i in chess:
        print(i)
    return chess

(2)依据DP表转移关系,利用递归将总问题分解为独立子问题

def printlcs(chess, a, i, j):
    if i ==0 or j ==0:
        return
    if chess[i][j][0] == 'ok':
        print('[', i, j, ']:', a[i-1])
        printlcs(chess, a, i-1, j-1)
    elif chess[i][j][0] == 'left':
        printlcs(chess, a, i, j-1)
    else:
        printlcs(chess, a, i-1, j)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值