阿里巴巴通义千问团队发布了 Qwen2 系列开源模型。该系列模型包括 5 个尺寸的预训练和指令微调模型:Qwen2-0.5B、Qwen2-1.5B、Qwen2-7B、Qwen2-57B-A14B 以及 Qwen2-72B。
随即,硅基流动团队在云服务平台 SiliconCloud 上线了 Qwen2-7B、Qwen2-57B-A14B、Qwen2-72B 模型。
欢迎来玩儿:
https://cloud.siliconflow.cn/models/text/chat/
注意!!!与上周发布的 GLM-4-9B 模型一样,上述三款 Qwen2 模型同样已进入 “6.18 购物狂欢节” 福利包:“新用户送 3 亿 token”**。**注册即可畅玩(截止 6 月 18 日 23:59):
www.siliconflow.cn/zh-cn/siliconcloud
Qwen2 模型评测表现及亮点
Qwen2 在多个评测基准上具有领先优势。 据 Qwen 官方博客介绍,在针对预训练语言模型的评估中,对比当前最优的开源模型,Qwen2-72B 在包括自然语言理解、知识、代码、数学及多语言等多项能力上均显著超越当前领先的模型,如 Llama-3-70B 以及 Qwen1.5-110B。 这得益于其预训练数据及训练方法的优化。
大规模预训练后,他们对模型进行精细的微调,大幅提升了模型的基础能力以及模型的智能水平。
他们全面评估了 Qwen2-72B-Instruct 在 16 个基准测试中的表现。Qwen2-72B-Instruct 在提升基础能力以及对齐人类价值观这两方面取得了较好平衡。相比 Qwen1.5 的 72B 模型,Qwen2-72B-Instruct 在所有评测中均大幅超越,并且能匹敌 Llama-3-70B-Instruct。
而在小模型方面,Qwen2 系列模型基本能够超越同等规模的最优开源模型甚至更大规模的模型。相比近期推出的最好的模型,Qwen2-7B-Instruct 依然能在多个评测上取得显著的优势,尤其是代码及中文理解上。
在代码与数学能力方面,Qwen2-72B-Instruct 具有显著的效果提升。
在长文本处理方面,Qwen2 系列中的所有 Instruct 模型,均在 32k 上下文长度上进行训练,并通过 YARN 或 Dual Chunk Attention 等技术,让 Qwen2-7B-Instruct 和 Qwen2-72B-Instruct 实现了长达 128K tokens 上下文长度的支持。他们还开源了一个智能体解决方案(github.com/QwenLM/Qwen-Agent),用于高效处理 100 万 tokens 级别的上下文。
在中文英语的基础上,他们针对性地 27 种语言进行了增强,并针对性地优化了多语言场景中常见的语言转换(code switch)问题,模型当前发生语言转换的概率大幅度降低。
此外,在安全方面,通过显著性检验(P 值),Qwen2-72B-Instruct 模型在安全性方面与 GPT-4 的表现相当,并且显著优于 Mistral-8x22B 模型。
Qwen2 模型地址:
https://modelscope.cn/organization/qwen
关于 SiliconCloud
SiliconCloud 是集合主流开源大模型的一站式云服务平台,为开发者提供更快、更便宜、更全面的模型 API。
目前,SiliconCloud 已上架包括 Qwen2、GLM-4-9B-Chat、DeepSeek V2、SDXL、InstantID 在内的多种开源大语言模型、图片生成模型,支持用户自由切换符合不同应用场景的模型。同时,SiliconCloud 提供开箱即用的大模型推理加速服务,为生成式 AI 应用带来更高效的用户体验。
真正在乎大模型推理性能和成本的开发者,绝不会错过 SiliconCloud。更何况,现在还送 3 亿 token。
快试试吧:
www.siliconflow.cn/zh-cn/siliconcloud