在人工智能和自然语言处理领域,大语言模型(LLMs)如GPT-4和LLaMA系列已经展现出令人瞩目的能力。然而,如何充分发挥这些模型的潜力,一直是研究者和实践者关注的焦点。最近,一篇题为《Principled Instructions Are All You Need for Questioning LLaMA-1/2, GPT-3.5/4》的论文引起了广泛关注。这篇论文提出了26条提示词原则,旨在提高与大语言模型交互的效果。今天,让我们深入探讨这些原则,看看它们如何改变我们与AI对话的方式。
提示工程:解锁AI潜能的钥匙
提示工程是一门新兴的技术,它关注如何通过精心设计的输入(提示)来引导大语言模型产生所需的输出。这篇论文的研究者们发现,通过应用特定的提示原则,可以显著提高模型输出的质量和准确性。
26条原则:全面提升AI交互体验
这26条原则涵盖了提示设计的多个方面,从结构和清晰度到内容和语言风格。让我们通过一些具体例子来理解这些原则是如何工作的。
序号 |
原则 |
案例 |
说明 |
1 |
简洁直接,避免礼貌用语 |
不用:"请问您能帮我解释一下气候变化吗?" |
直接陈述需求,避免不必要的礼貌用语,以获得更简洁的回答 |
2 |
明确目标受众 |
"解释量子力学,假设受众是高中生。" |
指定目标受众有助于模型调整回答的复杂度和用词 |
3 |
将复杂任务分解为简单步骤 |
"1. 列出做披萨的材料 |
将复杂任务分解可以获得更详细和结构化的回答 |
4 |
使用肯定性指令 |
不用:"不要使用专业术语" |
肯定性指令更容易被模型理解和执行 |
5 |
使用简化解释方法 |
"像解释给5岁孩子一样,描述光合作用。" |
要求简化解释可以得到更容易理解的回答 |
6 |
添加激励性语句 |
"我会为最佳答案给予$100奖励!解释相对论。" |
虽然模型不会真的获得奖励,但这可能会触发更详细的回答 |
7 |
使用示例驱动提示 |
"示例:苹果是红色的。 |