风中摇曳的小萝卜(机器学习)笔记 支持向量机

支持向量机就是找到一条直线,让两边的点与它的距离是最大的

只想两边的点为y=1和y=-1

然后就可以列出到直线的距离了

看分子的正负就可以区分点在直线的哪一边了

上面的表示为函数间隔 下面表示为函数范数

然后我们找到间隔最小的那些点,让最终直线距离他们最大

距离直线最近的点范数分之一就是我们需要优化的目标

优化计算过程中只和最近的点相关,这些样本也被称为支持向量

  

上面的推导过程看一下就好了,本博猪是一点都不理解,希望能早日和up一样牛

根据拉格拉日乘子法可以得到优化的对偶问题

通过升维的方法可以讲点区分为两个不同的区间,这个叫做非线性支持向量机

函数k就是变换之后两个样本点积的结果,称为核函数

小结:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值