最小代价生成树实现(算法与数据结构设计)

课题内容和要求

最小代价生成树的实现,分别以普利姆算法和克鲁斯卡尔算法实现最小代价生成树,并分析两种算法的适用场合。

数据结构说明

普利姆算法实现最小代价生成树的图采用邻接表存储结构,还有辅助数据结构,数组nearest,数组lowcost,数组mark。克鲁斯卡尔算法实现最小代价生成树的图采用邻接矩阵存储结构,其中还定义了辅助数据结构用于存放边。

算法设计

普利姆算法。
辅助数据结构说明:
(1)一维数组nearest,nearest[v]存放与v距离最近的顶点编号u,距离最近是指边(u,v)是所有与顶点v关联的边中权值最小的边。初始时,nearest[v] = -1.
(2)一维数组lowcost,lowcost[v]用于存放边(nearest[v],v)的权值。初始时lowcost[v]=INFINITY。INFINITY是假定的极大值。
(3)一维数组mark,mark[v]用于标记顶点v是否在生成树中,若mark[v]=0,表示顶点v未加入生成树;否则,表示v已加入生成树。初始时,mark[v]=0。
算法步骤:
(1)分别将数组nearest,lowcost,mark初始化并将源点加入生成树。
(2)循环n-1次,重复以下操作。
a.查找顶点k的未加入生成树的所有邻接顶点j,若边(k,j)的权值比lowcost[j]小,则将lowcost[j]更新为此权值,并令lowcost[j]=k。
b.在未加入生成树的顶点中,查找具有最小lowcost的顶点k。
c.将k加入生成树。

克鲁斯卡尔算法。
辅助数据结构说明:
(1)一维数组Edge,从邻接矩阵中获取所有边以及边对应的顶点保存在数组Edge中,并且采用排序算法对边按照权值递增排序。
(2)一维数组parent,用于标识各个顶点所属的连通分量,若两个顶点属于不同的连通分量,则将这两个顶点关联的边加入到生成树中。parent[i]表示顶点i所属的连通分量,初始时parent[i]=i,表示各顶点自成一个连通分量。
算法步骤:
(1)从邻接矩阵中获取所有边存储于数组Edge。
(2)调用快速排序对数组Edge边按权值从小到大排序
(3)变量k表示当前构造的最小代价生成树中的边数,其初始值为0,若k<n-1,则循环执行以下操作。
a.依次从Edge中取出边(u,v)
对u和v所在连通分量paren[u]和parent[v]进行判断,若两者不相等,表示两顶点属于不同连通分量,输出此边,并合并paren[u]和parent[v]两个连通分量;若paren[u]和parent[v]相等,表示属于同一连通分量,舍去此边而选择下一条最小的边。

详细设计

普利姆算法生成最小代价生成树文件Prim_main.c、Prim.c、Prim.h
Prim_main.c

#include <stdio.h>
#include <stdlib.h>
#include "Prim.h"
int main()
{
    // 以下为图例1
    LGraph *lg = (LGraph *)malloc(sizeof(LGraph));
    if (!Init(lg, 6))
    {
        printf("邻接表初始化失败\n");
        return 0;
    }
    // 定义边集数组然后利用循环加入到图中
    int e[18][3] = {{0, 1, 10}, {1, 0, 10}, {1, 4, 2}, {4, 1, 2}, {4, 3, 9}, 
                    {3, 4, 9}, {0, 5, 4}, {5, 0, 4}, {4, 5, 7}, {5, 4, 7}, 
                    {0, 2, 7}, {2, 0, 7}, {2, 5, 6}, {5, 2, 6}, {3, 5, 5}, 
                    {5, 3, 5}, {2, 3, 8}, {3, 2, 8}};
    for (int i = 0; i < 18; i++)
    {
        if (!Insert(lg, e[i][0], e[i][1], e[i][2]))
        {
            printf("边插入失败\n");
            return 0;
        }
    }
    int nearest[6] = {0};
    int lowcost[6] = {0};
    if (!Prim(0, nearest, lowcost, *lg))    // 构造最小生成树,以结点0为源点
    {
        printf("最小生成树构造失败\n");
    }
    printf("图例1最小代价生成树的边集如下:\n");
    int sum = 0;    // 计算最小权值之和
    for (int i = 0; i < lg->n; i++) // 输出最小代价生成树的边集
    {
        printf("(%d,%d,%d) ",nearest[i],i,lowcost[i]);
        sum+=lowcost[i];
    }
    printf("\n最小权值和为%d\n",sum);
    // 以上为图例1
    printf("----------------------------\n");
    // 以下为图例2
    LGraph *lg_2 = (LGraph *)malloc(sizeof(LGraph));
    if (!Init(lg_2, 6))
    {
        printf("邻接表初始化失败\n");
        return 0;
    }
    // 定义边集数组然后利用循环加入到图中
    int e_2[20][3] = {{0, 1, 6}, {1, 0, 6}, {0, 2, 1}, {2, 0, 1}, {0, 3, 5}, 
                    {3, 0, 5}, {1, 2, 5}, {2, 1, 5}, {2, 3, 5}, {3, 2, 5}, 
                    {1, 4, 3}, {4, 1, 3}, {3, 5, 2}, {5, 3, 2}, {2, 4, 6}, 
                    {4, 2, 6}, {2, 5, 4}, {5, 2, 4}, {4, 5, 6}, {5, 4, 6}};
    for (int i = 0; i < 20; i++)
    {
        if (!Insert(lg_2, e_2[i][0], e_2[i][1], e_2[i][2]))
        {
            printf("边插入失败\n");
            return 0;
        }
    }
    int nearest_2[6] = {0};
    int lowcost_2[6] = {0};
    if (!Prim(0, nearest_2, lowcost_2, *lg_2))  // 构造最小生成树,以0为源点
    {
        printf("最小生成树构造失败\n");
    }
    printf("图例2最小代价生成树的边集如下:\n");
    sum = 0;
    for (int i = 0; i < lg_2->n; i++)   // 输出最小代价生成树的边集
    {
        printf("(%d,%d,%d) ",nearest_2[i],i,lowcost_2[i]);
        sum+=lowcost_2[i];
    }
    printf("\n最小权值和为%d\n",sum);
    printf("输入回车结束程序。\n");
    getchar();
    Destroy(lg);
    Destroy(lg_2);
}

Prim.h

#ifndef __PRIM_H__
#define __PRIM_H__
typedef struct eNode    // 边结点
{
    int adjVex;            // 顶点v
    int w;                 // 点u与点v之间的权值
    struct eNode *nextArc; // 指向下一个结点
} ENode;
typedef struct lGraph   // 邻接表
{
    int n; // 图顶点数
    int e; // 图边数
    ENode **a;  // 指向一维指针的数组
} LGraph;
#define INFINITY 65535  // 假定一个无限值

int Init(LGraph *lg, int nSize);                       // 邻接表初始化
void Destroy(LGraph *lg);                              // 邻接表的撤销
int Exist(LGraph *lg, int u, int v);                   // 边搜索
int Insert(LGraph *lg, int u, int v, int w);           // 边插入
int Prim(int k, int *nearest, int *lowcost, LGraph g); // 普利姆算法
#endif

Prim.c

#include "Prim.h"
#include <stdlib.h>
#include <stdio.h>
/**
 * @brief 邻接表初始化
 * @param lg 指向邻接表的指针
 * @param nSize 顶点个数
 * @return 0,初始化失败;1,初始化成功
*/
int Init(LGraph *lg, int nSize)
{
    lg->n = nSize;
    lg->e = 0;
    lg->a = (ENode **)malloc(nSize * sizeof(ENode *)); // 动态生成长度为n的一维指针数组
    if (!lg->a)   // 判断空间申请是否成功
    {
        return 0; // 申请空间失败
    }
    else
    {
        for (int i = 0; i < lg->n; i++)
        {
            lg->a[i] = NULL; // 将指针数组a置空
        }
        return 1; // 申请空间成功
    }
}
/**
 * @brief 邻接表的撤销
 * @param lg 指向邻接表的指针
 * @return void
*/
void Destroy(LGraph *lg)
{
    int i;
    ENode *p,*q;
    for(i = 0;i<lg->n;i++)
    {
        p = lg->a[i];
        q=p;
        while(p)
        {
            p = p->nextArc;
            free(q);
            q=p;
        }
    }
    free(lg->a);
}
// 边搜索
/**
 * @brief 边搜索
 * @param lg 指向邻接表的指针
 * @param u 边的始点
 * @param v 边的终点
 * @return 0,搜索失败或顶点有误;1,搜索成功
*/
int Exist(LGraph *lg, int u, int v)
{
    ENode *p = NULL;
    if(u<0||v<0||u>lg->n-1||v>lg->n-1||u==v)
    {

        return 0;  // 判断顶点是否有误
    }
    p=lg->a[u];
    while(p&&p->adjVex != v)
    {
        p = p->nextArc;
    }
    if(!p)
    {
        return 0;  // 未找到边
    }
    else
    {
        return 1;   // 找到边
    }
}
// 边插入
/**
 * @brief 边插入
 * @param lg 指向邻接表的指针
 * @param u 边的始点
 * @param v 边的终点
 * @param w 边的权值
 * @return 0,插入失败或边已存在;1,插入成功
*/
int Insert(LGraph *lg, int u, int v, int w)
{
    ENode *p = NULL;
    if(u<0||v<0||u>lg->n-1||v>lg->n-1||u==v)
    {

        return 0;  // 判断顶点是否有误
    }
    if(Exist(lg,u,v))
    {
        printf("边已存在。\n");
        return 0;
    }
    p = (ENode*)malloc(sizeof(ENode));  // 为新结点分配空间
    p->adjVex = v;
    p->w = w;
    
    // 将新结点插入单链表的最前面,头插
    p->nextArc = lg->a[u];  
    lg->a[u] = p;
    
    lg->e++;
    return 1;
}
// 普利姆算法
/**
 * @brief 普利姆算法生成最小代价生成树
 * @param k 源点
 * @param nearest 存放顶点的最近顶点编号
 * @param lowcost 存放顶点距离最近点的距离
 * @param g 邻接表
 * @return 0,失败;1,成功
*/
int Prim(int k, int *nearest, int *lowcost, LGraph g)
{
    ENode *p;
    int i,j;
    int *mark = (int*)malloc(g.n*sizeof(int));  // 辅助数组
    if(k<0||k>g.n-1)    // 判断源点是否有效
    {
        return 0;
    }
    for(i = 0;i<g.n;i++)    // nearest数组,lowcost数组和mark数组初始化
    {
        nearest[i] = -1;
        lowcost[i] = INFINITY;
        mark[i]=0;  // 赋值为1表示结点加入生成树,0表示未加入
    }

    // 源点k加入生成树
    lowcost[k] = 0;
    nearest[k]=k;
    mark[k] = 1;
    
    for(i = 1;i<g.n;i++)    // 将其余n-1条边加入生成树
    {
        for(p = g.a[k];p;p = p->nextArc)    // 更新生成树外的顶点lowcost值
        {
            j=p->adjVex;
            if((!mark[j])&&(lowcost[j]>p->w))
            {
                lowcost[j] = p->w;
                nearest[j] = k;
            }
        }
        int min = INFINITY;
        for(j = 0;j<g.n;j++)    // 找生成树外顶点中具有最小lowcost值的顶点k
        {
            if((!mark[j])&&(lowcost[j]<min))
            {
                min = lowcost[j];
                k = j;
            }
        }
        mark[k]=1;  // 将顶点k加入生成树
    }
    return 1;
}

克鲁斯卡尔算法生成最小代价生成树文件Kruskal_main.c、Kruskal.h、Kruskal.c
Kruskal_main.c

#include <stdio.h>
#include <stdlib.h>
#include "Kruskal.h"
int main()
{
    // 图例1
    MGraph *mg = (MGraph*)malloc(sizeof(MGraph));
    if(!Init(mg,6))
    {
        printf("邻接矩阵初始化失败\n");
    }
    // 定义边集数组然后利用循环加入到图中
    int e[9][3] = {{0,1,10},{1,4,2},{0,2,7},{0,5,4},{4,5,7},
                        {3,4,9},{2,5,6},{3,5,5},{2,3,8}};
    
    for(int i = 0;i<9;i++)
    {
        if(!Insert(mg,e[i][0],e[i][1],e[i][2]))
        {
            printf("边插入失败\n");
        }
    }
    Edge *edg = (Edge*)malloc(mg->e*sizeof(Edge));  // 辅助数据结构,存放边集
    int k = 0;
    for(int i = 0;i<mg->n;i++)
    {
        for(int j = 0; j<i;j++)
        {
            if(mg->a[i][j]!=0&&mg->a[i][j]!=INFINITY)
            {
                edg[k].u = i;
                edg[k].v = j;
                edg[k].w = mg->a[i][j];
                k++;
            }
        }
    }
    int sum = 0;    // 计算最小代价生成树权值和
    printf("图例1最小代价生成树的边集如下:\n");
    Kruskal(mg,edg,&sum);
    printf("\n最小代价生成树权值和为:%d\n",sum);
    // 以上为图例1
    printf("-------------------------\n");
    // 以下为图例2
    MGraph *mg_2 = (MGraph*)malloc(sizeof(MGraph));
    if(!Init(mg_2,6))
    {
        printf("邻接矩阵初始化失败\n");
    }
    // 定义边集数组然后利用循环加入到图中
    int e_2[10][3] = {{0,1,6},{0,2,1},{0,3,5},{1,2,5},{2,3,5},
                    {1,4,3},{2,4,6},{2,5,4},{3,5,2},{4,5,6}};
    for(int i = 0;i<10;i++)
    {
        if(!Insert(mg_2,e_2[i][0],e_2[i][1],e_2[i][2]))
        {
            printf("边插入失败\n");
        }
    }
    Edge *edg_2 = (Edge*)malloc(mg_2->e*sizeof(Edge));
    k = 0;
    for(int i = 0;i<mg_2->n;i++)
    {
        for(int j = 0; j<i;j++)
        {
            if(mg_2->a[i][j]!=0&&mg_2->a[i][j]!=INFINITY)
            {
                edg_2[k].u = i;
                edg_2[k].v = j;
                edg_2[k].w = mg_2->a[i][j];
                k++;
            }
        }
    }
    sum = 0;    // 计算最小代价生成树权值和
    printf("图例2最小代价生成树的边集如下:\n");
    Kruskal(mg_2,edg_2,&sum);
    printf("\n最小代价生成树权值和为:%d\n",sum);
    printf("输入回车结束程序。\n");
    getchar();
    Destroy(mg);
    Destroy(mg_2);
}

Kruskal.h

#ifndef __KRUSKAL_H__
#define __DRUSKAL_H__
typedef struct mGraph
{
    int **a; // 邻接矩阵
    int n;   // 图的顶点数
    int e;   // 图的边数
} MGraph;
typedef struct edge // 辅助数据结构,保存邻接矩阵的边
{
    int u;  // 边的始点
    int v;  // 边的终点
    int w;  // 边的权值
} Edge;
#define INFINITY 65535  // 假定一个最大值,给边赋值表示顶点间不可达
int Init(MGraph *mg, int nSize);                // 邻接矩阵初始化
void Destroy(MGraph *mg);                       // 邻接矩阵的撤销
int Insert(MGraph *mg, int u, int v, int w);    // 边插入
int FindParent(int *parent, int a);             // 查结点树根
void Swap(Edge *edg, int i, int j);             // 交换函数
int Partition(Edge *edg, int left, int right);  // 分划函数
void QuickSort(Edge *edg, int left, int right); // 快速排序
void Kruskal(MGraph *mg, Edge *edg,int *sum);            // 克鲁斯卡尔算法生成最小代价生成树
#endif

Kruskal.c

#include <stdio.h>
#include <stdlib.h>
#include "Kruskal.h"
/**
 * @brief 邻接矩阵初始化
 * @param mg 指向待初始化的矩阵指针
 * @param nSize 顶点数
 * @return 0,初始化失败;1,初始化成功
*/
int Init(MGraph *mg, int nSize)
{
    mg->n = nSize;  // 初始化顶点数
    mg->e = 0;
    mg->a = (int**)malloc(nSize*sizeof(int*));
    if(!mg->a)
    {
        return 0;   // 初始化失败
    }
    for(int i = 0;i<mg->n;i++)  // 循环初始化每条边
    {
        mg->a[i] = (int*)malloc(nSize*sizeof(int));
        for(int j = 0; j<mg->n; j++)
        {
            mg->a[i][j] = INFINITY;
        }
        mg->a[i][i] = 0;
    }
    return 1;   // 初始化成功
}
/**
 * @brief 邻接矩阵的撤销
 * @param mg 指向待撤销的矩阵的指针
 * @return void
*/
void Destroy(MGraph *mg)
{
    for(int i = 0; i<mg->n; i++)
    {
        free(mg->a[i]);
    }
    free(mg->a);
}
/**
 * @brief 边插入 
 * @param mg 指向待邻接矩阵的指针
 * @param u 要插入边的始点
 * @param v 要插入边的终点
 * @param w 边的权值
 * @return 0,插入失败或边已存在;1,边插入成功
*/
int Insert(MGraph *mg, int u, int v, int w)
{
    if(u<0||v<0||u>mg->n-1||v>mg->n-1||u==v)
    {
        return 0;   // 插入失败
    }
    if(mg->a[u][v] != INFINITY)
    {
        printf("边已存在\n");
        return 0;
    }
    mg->a[u][v] = w;    // 插入新边
    mg->a[v][u] = w;
    mg->e++;
    return 1;   // 插入成功
}
/**
 * @brief 查找顶点的树根
 * @param parent 存放所有结点树根的数组
 * @param a 待查找树根的结点
 * @return 返回a的树根
*/
int FindParent(int *parent,int a)
{
    int t = a;
    while(t != parent[t])
    {
        t = parent[t];
    }
    return t;
}
/**
 * @brief 交换函数
 * @param edg 存放边以及边相关信息的数组
 * @param i 数组下标
 * @param j 数组下标
 * @return void
*/
void Swap(Edge *edg,int i, int j)
{
    Edge tmp;
    tmp = edg[i];
    edg[i] = edg[j];
    edg[j] = tmp;
}
/**
 * @brief 分划函数,由快速排序调用
 * @param edg 存放边以及边相关信息的数组
 * @param left 数组下标,左边界
 * @param right 数组下标,右边界
 * @return j,快速排序分划元素的下标
*/
int Partition(Edge *edg,int left,int right)
{
    int i = left;
    int j = right+1;
    do
    {
        do
        {
            i++;
        }while(edg[i].w<edg[left].w);
        do
        {
            j--;
        } while(edg[j].w>edg[left].w);
        if(i<j)
        {
            Swap(edg,i,j);
        }
    }while(i<j);
    Swap(edg, left, j);
    return j;
}
/**
 * @brief 快速排序
 * @param edg 存放边以及边相关信息的数组
 * @param left 数组下标,左边界
 * @param right 数组下标,右边界
 * @return void
*/
void QuickSort(Edge *edg, int left, int right)
{
    if(left<right)
    {
        int j = Partition(edg, left, right);
        QuickSort(edg, left, j-1);
        QuickSort(edg, j+1,right);
    }
}
/**
 * @brief 克鲁斯卡尔算法生成最小代价生成树
 * @param mg 指向邻接矩阵的指针
 * @param edg 存放边以及边相关信息的数组
 * @param sum 计算最小代价生成树权值之和
 * @return void
*/
void Kruskal(MGraph *mg, Edge *edg,int *sum)
{
    int u1,v1;  // 记录顶点的根结点
    int *parent = (int*)malloc(mg->n*sizeof(int));  // 记录所有顶点的根结点,用于判断选取的边是否使生成的树构成回路
    for(int i = 0;i<mg->n;i++)  // 初始化使每个顶点的根结点为自己
    {
        parent[i] = i;
    }
    QuickSort(edg, 0, mg->e-1); // 将保存边的数组按权值由小到大排序
    int count = 0;
    for(int i = 0;i<mg->e;i++)
    {
        u1 = FindParent(parent,edg[i].u);   // 查找顶点的根结点
        v1 = FindParent(parent,edg[i].v);
        if(u1 != v1)    // 根结点不同,表示不属于同一颗树
        {
            count++;
            parent[u1] = v1;    // 合并根节点
            printf("(%d,%d,%d) ",edg[i].u,edg[i].v,edg[i].w); // 输出属于最小生成树的边集
            *sum += edg[i].w;
        }
        if(count == mg->n-1)    // 最小生成树边数e等于顶点数n-1,提前退出
        {
            break;
        }
    }
}

测试数据及其结果分析

普利姆算法生成最小代价生成树图例1
在这里插入图片描述
在这里插入图片描述

图例2
在这里插入图片描述
在这里插入图片描述

程序运行结果:
在这里插入图片描述

克鲁斯卡尔算法生成最小代价生成树图例1
在这里插入图片描述
在这里插入图片描述

图例2
在这里插入图片描述
在这里插入图片描述

程序运行结果:
在这里插入图片描述

总结

由普利姆算法的时间复杂度O(n2),普利姆算法更适合当图中边的数量远大于点的数量的情形,在电路设计中可以应用于印刷电路板的布线问题以减少导线长度。由克鲁斯卡尔算法的时间复杂度O(eloge),克鲁斯卡尔算法更适合当图中点的数量远大于边的数量的情形,与普利姆算法类似,也可以用于优化连接路径的问题。

  • 31
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值