题目大意:
给定一个t,求一段连续数的平方和(例如:x1*x1+x2*x2+x3*x3)等于t的方法有几种,并要求输出方案
分析:
尺取法。应为连续的数时单调的,所以能使用尺取法。个人是尺取时看sum==t,是就记录下l,r,并将其存
放到vector里,则size()就是方案书,l-r就是方案里包含几个数,[l,r)区间内数就是方案。
code:
#define debug
//#define opentext
#include<stdio.h>
#include<math.h>
#include<cmath>
#include<queue>
#include<stack>
#include<string>
#include<cstring>
#include<string.h>
#include<algorithm>
#include<iostream>
#include<vector>
#include<functional>
#include<iomanip>
#include<map>
#include<set>
#define pb push_back
#define dbg(x) cout<<#x<<" = "<<(x)<<endl;
#define lson l,m,rt<<1
#define cmm(x) cout<<"("<<(x)<<")";
#define rson m+1,r,rt<<1|1
using namespace std;
typedef long long ll;
typedef pair<int,int> pii;
typedef pair<ll,ll>PLL;
typedef pair<int,ll>Pil;
typedef pair<ll,int>Pli;
const ll INF = 0x3f3f3f3f;
const ll inf=0x7fffffff;
const double eps=1e-8;
const int maxn =1000000;
const int N = 510;
const ll mod=1e9+7;
const ll MOD=10007;
//------
//define
ll s[maxn];
const int n=1e7;
struct node {
int l,r;
node(int l,int r):r(r),l(l) {}
};
vector<node>m;
//solve
void solve() {
ll t;
while(cin>>t) {
ll sum=0;
int l=1,r=1,cnt=0;
for(;;) {
while(r*r<=t&&sum<t) {//r*r>t时不管怎么取都是不可能组成t的
sum+=(1ll*r*r);
r++;
}
if(sum==t) {
m.push_back(node(l,r));
}
sum-=(1ll*l*l);
l++;
if(sum<=0)break;
}
cout<<m.size()<<endl;
for(int i=0; i<m.size(); i++) {
int l=m[i].l,r=m[i].r;
cout<<r-l;
for(int j=l; j<r; j++)cout<<" "<<j;
cout<<endl;
}
m.clear();
}
}
int main() {
ios_base::sync_with_stdio(false);
//-----------freopen-------------------
#ifdef debug
freopen("in.txt", "r", stdin);
#ifdef opentext
freopen("out.txt","w",stdout);
#endif
#endif
//-------------------------------------
cin.tie(0);
cout.tie(0);
solve();
//-----------opentext------------------
#ifdef opentext
fclose(stdin);
fclose(stdout);
system("out.txt");
#endif
//-------------------------------------
return 0;
}