- 博客(429)
- 收藏
- 关注

原创 DeepFace深度学习库+OpenCV实现——情绪分析器
实时情绪检测器展示了如何将现代AI技术应用于日常生活中,以提升人机交互的质量和效率。无论是作为开发者的实验项目还是实际应用场景的一部分,这款程序都提供了一个强大而灵活的基础框架,可以进一步扩展和定制以适应更多样化的需求。
2025-03-20 09:00:00
4330
1

原创 轻型民用无人机驾驶航空器安全操控——理论考试多旋翼部分笔记
ADS-B(Automatic Dependent Surveilance-Broadcast)中文名称为广播式自动相关监视,是一种基于全球卫星定位系统和利用空地、空空数据链实现交通监控和信息传递的空管监视新技术。该技术能够实现飞行信息共享、装备了此系统的飞机可通过数据链广播其自身的精确位置和其他数据、可接收其他飞机通过此系统广播的位置等信息,但不可对民用无人驾骏航空器的刹停进行控制。
2024-02-01 19:03:55
68487
12
原创 从零搭建 Stable Diffusion 图片生成模型——Colab 流程(新手也能学会)
《Colab平台从零搭建StableDiffusion文生图全流程指南》本教程详细讲解了在Colab平台部署StableDiffusion的完整流程:1)安装diffusers等必要依赖库;2)通过HuggingFace账号授权获取模型权限;3)加载StableDiffusion-v1.5模型;4)输入英文prompt生成图像;5)保存结果及参数调节。关键要点包括:必须使用英文提示词(中文效果不稳定)、guidance_scale控制提示词强度(7-12为宜)、可调整图像尺寸和推理步数(25-50步)。教
2025-06-12 08:00:00
399
原创 论文研读——去偏蒸馏用于一致性正则化《Debiased Distillation for Consistency Regularization》
一文看懂当前最新的知识蒸馏IKD方法
2025-06-09 07:45:00
1050
原创 YOLOv8 × VisDrone 全流程实战:训练你的无人机识别模型 AI(第一部分:数据集准备)
想打造属于自己的无人机目标识别AI?这篇手把手教程带你从零开始上手实战!在本篇文章中,我们将带你完整走完 YOLOv8 与 VisDrone 数据集的整合流程,涵盖从数据获取到预处理的每一个关键步骤。无论你是初学者还是有一定基础的开发者,都能轻松跟随操作,完成无人机图像数据的标准化转换。🔧 你将学到:如何从 GitHub 下载 VisDrone 数据集并高效管理至 Google Drive在 Google Colab 中快速部署 YOLOv8 环境并挂载云端存储解压数据 YOLO.....
2025-06-05 13:48:45
1044
原创 Colab零基础实战:1小时训练高精度猫狗分类模型!—— 模型训练、手把手教学、附全部源码
🐱🐶 「Colab零基础实战:1小时训练高精度猫狗分类模型!」无需高端显卡!白嫖谷歌GPU+完整代码,从数据下载→模型训练→预测部署一条龙搞定:✅ Kaggle数据集自动下载:告别手动上传,1行代码拉取25,000张图片!✅ 工业级训练技巧:早停机制防过拟合,验证准确率>85%!✅ 模型秒下载:挂载Google Drive网页端下载,64MB文件1分钟搞定(亲测碾压files.download())!✅ 预测可视化:一键运行展示分类结果+置信
2025-06-05 08:00:00
1033
原创 手把手教会用深度学习实现花卉识别:打造你自己的智能植物识别系统!(附全部源码)[特殊字符]
本项目基于深度学习模型 MobileNetV2,实现了对 Oxford Flowers 102 数据集中各类花卉的高效识别。我们使用 TensorFlow 构建模型并在图片文件夹中进行批量预测,最终通过可视化展示识别结果。即使你不是植物专家,也能轻松分辨不同种类的花卉,赋能教育、旅游、农业等多个领域。通过本篇博客,快速掌握智能识花系统的完整流程,从训练到部署一站式搞定!
2025-06-04 12:44:31
1201
原创 教AI看懂手绘图:猫、狗、熊猫和椅子我都认识
想知道AI能不能看懂你在画布上随手画的猫、狗或者熊猫吗?本篇文章带你从零开始,基于 Google 的 QuickDraw 数据集,使用 TensorFlow 搭建卷积神经网络,实现一个轻量级的手绘图识别模型。不仅包含完整的模型训练代码,还有交互式画布演示,让你画完就能看到预测结果。让AI看看你画得像不像真的熊猫!
2025-06-04 08:30:00
722
原创 力扣每日一题——分发糖果
本文介绍了LeetCode题目"分发糖果"的贪心解法。题目要求给一排孩子分糖果,满足每个孩子至少1颗且相邻孩子中评分高的糖果更多。解法采用两次遍历:第一次从左到右确保右高分孩子糖果更多,第二次从右到左处理左高分情况并用max函数维持条件。Java和C++实现均使用O(n)时间和空间复杂度,其中空间开销用于存储糖果分配数组。该方法高效协调了相邻关系,确保最少糖果数的同时满足题目所有条件。
2025-06-03 14:00:00
660
原创 Python实现——天气小挂件
本文介绍了一个基于Python的天气查询工具的实现方法。该工具通过和风天气API获取实时天气数据,并整合了时间显示和名言功能。文章详细讲解了代码实现思路,包括数据获取、异常处理、界面美化等模块。核心功能使用requests库进行API调用,通过pyfiglet和rich库实现终端可视化效果。同时提供了获取和风天气API的完整指南,包括注册流程、调用规范、注意事项等。该工具支持中文城市名查询,返回包含温度、湿度等信息的精美表格,并附带当前时间和随机名言,提升了用户体验。整体代码约150行,结构清晰易于扩展。
2025-06-03 08:30:00
1562
原创 力扣每日一题——给小朋友们分糖果||
本文解析了力扣2929题"给小朋友们分糖果II"的数学解法。题目要求将n颗糖分给3个小朋友,每人不超过limit颗,求分配方案数。解法采用容斥原理:1) 计算无约束的总方案数C(n+2,2);2) 使用"强制先发糖"技巧计算违反约束的情况;3) 通过公式"总方案-3单超限+3双超限-三超限"得到结果。提供了Java/C++/Python实现代码,时间复杂度O(1),适用于大数情况。该方法巧妙运用组合数学和容斥原理解决约束分配问题。
2025-06-02 14:00:00
915
原创 Google Colab 零基础入门教学
专为零基础入门者设计的 Google Colab 教学文档与实战案例,带你从认识 Colab 到实际动手写代码,逐步掌握 Python 基础语法、数据可视化、文件读取及简单机器学习模型。无需安装环境,打开浏览器即可轻松开始编程之旅,让你在云端自由学习、练习与探索数据科学的魅力!
2025-06-02 07:30:00
1037
原创 力扣每日一题——蛇梯棋
即刻点击探索 → 从骰子到代码,在蛇梯之间跃迁最短路径!“童趣棋盘暗藏层序遍历精髓——BFS最优雅的应用场景之一。”📚 博客硬核内容:双语言代码+动态推演+易错案例解析,点击探索坐标转换的数学魔术!
2025-06-01 09:00:00
1604
原创 如何快速的从Google colab 中下载文件(亲测好用)
🔥 「Colab模型下载终极指南:告别卡顿,1分钟搞定大文件!」还在为Colab下载模型时无限卡死崩溃?亲测三套方案:🚫 慎用files.download()——90%概率卡住不动!✅ 强推Google Drive网页下载:挂载→复制→网页端一键下载,64MB模型1分钟极速搞定,进度条肉眼可见!💡 紧急备用:压缩后再下载,稳定性+1但速度仍有限。👉 结论:Drive网页端是唯一可靠方案,别再浪费时间试错了
2025-05-31 17:49:08
794
原创 力扣每日一题——找到离给定两个节点最近的节点
博客摘要:双指针路径交汇法求解有向图最近公共可达节点问题核心:给定一个有向图(节点最多一条出边,可能存在环),需找到节点 node1 和 node2 均可达的节点,使两者到该节点距离的较大值最小化。若有多个解,返回最小节点编号;无解则返回 -1。解法精髓:采用 双指针路径交汇法(Dual-Pointer Path Convergence)
2025-05-30 16:03:35
771
原创 手写数字识别实战教程:步掌握从模型训练到实时交互的全流程(绝对不要错过!!!)
模型构建:基于MNIST数据集,使用Keras搭建卷积神经网络(CNN),详解数据归一化、网络层设计与准确率优化技巧(测试集准确率>98%);交互实现:结合OpenCV创建绘图界面,实现鼠标手写输入、实时预测与置信度显示,解决用户手写图像预处理(缩放、归一化)与模型对接难题;
2025-05-30 08:00:00
2065
原创 力扣每日一题——连接两棵树后最大目标节点数目 ||
本文介绍了LeetCode 3373题的解法——双树贡献分离法。该算法通过将问题分解为两个独立子问题:计算每棵树内部的节点贡献,再通过简单相加得到最终结果。Java和C++实现都采用BFS遍历树结构,记录节点层级奇偶分布,最后将第一棵树的节点贡献与第二棵树的最大贡献相加。时间复杂度为O(n²+m²)(BFS实现),空间复杂度为O(n+m+k)。这种分治思路避免了暴力枚举,有效优化了算法效率。
2025-05-29 15:45:00
733
原创 Python制作小游戏——贪吃蛇(PyGame)
Python制作小游戏——贪吃蛇(PyGame),新手也能学会,完整源码提供,你确定不来看看?
2025-05-29 08:00:00
1268
原创 力扣每日一题2025.5.28——题号:3372.连接两棵树后最大目标节点数目 |
该题要求连接两棵无向树后计算每个节点的最大目标节点数。核心思路是:1) 预处理第二棵树,找出在k-1步内能覆盖最多节点的连接点;2) 对第一棵树每个节点计算k步内可达节点数。通过分层BFS遍历树结构,时间复杂度为O(k(n+m)),空间复杂度O(n+m)。Java和C++实现均采用邻接表存储树结构,并通过广度优先搜索分层统计可达节点数。最终结果为两棵树的覆盖数之和,在合理时间复杂度内解决了问题。
2025-05-28 15:00:00
843
原创 Python魔法——Turtle库实现螺旋花艺术
这篇文章介绍了使用Python的Turtle库创建艺术图案的方法。主要内容包括:1. 基础螺旋花的绘制技巧,通过彩虹颜色渐变和59度旋转角实现美观图案;2. 进阶玩法如模拟梵高《星空》效果,包含随机星星、旋涡和波浪线的组合;3. Turtle库的特点和实用技巧,如色彩模式转换、图形优化等。文章展示了如何将简单的绘图命令通过数学规律和创意设计转化为富有艺术感的数字作品,特别适合编程与艺术相结合的创作实践。
2025-05-28 08:00:00
1953
原创 力扣热题——分类求和并作差
本文介绍了两种计算区间[1,n]内整数基于能否被m整除的分类差值方法。常规遍历法通过循环判断累加,时间复杂度O(n),易于实现但效率较低。数学优化法则利用等差数列求和公式直接计算结果,时间复杂度降至O(1),特别适合大规模数据处理。两种方法分别适用于不同场景:遍历法适合小规模数据调试,数学方法更适合高效计算需求。两种解法均提供了Java和C++的实现代码示例。
2025-05-27 15:00:00
1638
原创 研读论文——《工业异常检测综述》
《深度工业图像异常检测综述》一文系统探讨了工业图像异常检测(IAD)在制造业中的挑战与解决方案。传统方法面临主观误判、高成本及泛化能力不足等问题,而深度学习方法通过自动特征提取和端到端学习,显著提升了检测精度和效率。论文从神经网络架构、监督学习程度、损失函数、评估指标和数据集五个维度,回顾了基于深度学习的IAD方法,并提出了适用于工业制造背景的评估标准。文章还详细分析了无监督、自监督、弱监督和全监督方法的特点与适用场景,指出了计算成本、泛化能力、数据需求和部署适应性等局限。未来研究方向包括统一模型构建、多源
2025-05-27 09:17:59
977
原创 力扣热题-有向图中最大颜色值
本文介绍了力扣1857题"有向图中最大颜色值"的解法。题目要求在给定有向图中找出路径中出现次数最多的颜色值,若图中存在环则返回-1。主要解法采用拓扑排序检测环,并结合动态规划维护各节点26种颜色的最大出现次数。时间复杂度为O(n+m26),空间复杂度为O(n26+m)。Java和C++实现均通过拓扑排序处理节点,动态规划更新颜色状态,最终返回最大颜色值或检测到环时返回-1。该解法有效结合了图论算法和动态规划技巧来解决问题。
2025-05-26 15:32:24
1038
原创 综述论文研读——《工业异常合成综述》
该综述系统梳理了工业异常合成的技术演进,其提出的四维分类法为领域建立了统一分析框架。未来,随着物理信息神经网络(PINN)和世界模型(World Model)的发展,异常合成有望突破"数据仿真"阶段,进入"物理可信"的新纪元。多模态VLM与工业知识的深度融合,或将催生具备自主缺陷推理能力的下一代合成系统。
2025-05-26 08:00:00
649
原创 力扣热题——连接两字母单词得到的最长回文串
该题目要求从给定双字母单词数组中构造最长回文串。该题目要求从给定双字母单词数组中构造最长回文串。解题思路包括:1)用哈希表统计单词频率;2)处理互为反转的非回文单词对,每对贡献4字符长度;3)处理自身回文单词,偶数次每对贡献4字符,奇数次可单独作为中心贡献2字符。算法时间复杂度O(n),空间复杂度O(n),其中n为单词数量。最终结果为所有配对贡献和加上可能的中心贡献。示例解法提供了Java和C++实现,通过合理配对和中心处理最大化回文串长度。
2025-05-25 13:16:51
861
原创 力扣热题——查找包含给定字符的单词
该题目要求找出字符串数组中包含指定字符x的所有单词下标。解题思路是遍历数组,逐个检查单词是否包含x。算法时间复杂度为O(n*m)(n为数组长度,m为单词平均长度),空间复杂度为O(n)。提供了Java、C++、C和Python四种实现方案,均采用线性扫描和字符串查找方法。题目数据规模较小(n≤50),暴力解法完全适用且高效。
2025-05-24 13:30:09
995
原创 《Android 应用开发基础教程》——第十五章:Android 动画机制详解(属性动画、帧动画、过渡动画)
帧动画:适合静态图片连续播放,但资源占用大补间动画:简单快速,适合临时效果,但无法改变属性值属性动画:现代 Android 推荐使用方式,可操作任意属性值可使用组合动画,或用简化代码。
2025-05-23 15:00:00
1119
原创 论文研读——《Myriad:应用视觉专家进行工业异常检测的大型多模态模型》
本文提出了一个新颖的大型多模态模型系统 Myriad,专为工业异常检测任务设计,通过引入预训练工业异常检测模型生成的异常图(anomaly map)作为视觉专家引导信号,利用视觉提示生成器(VPG)和文本提示生成器(TPG)分别增强视觉编码器和语言模型,从而实现对图像中异常区域的更精准关注与语义理解,有效提升了多模态模型在工业检测中的泛化能力和任务适应性。
2025-05-23 09:19:33
972
原创 力扣热题——罗马数字转整数
如何将罗马数字转换为整数的算法,主要使用哈希表来映射罗马字符到对应的整数值。算法通过遍历字符串,根据字符的大小关系决定是相加还是相减,从而得到最终的整数结果。文章提供了Java、C++和C三种编程语言的实现代码,并分析了算法的时间复杂度和空间复杂度,分别为O(n)和O(1)。该算法适用于处理有效的罗马数字字符串,且能够正确处理特殊情况如IV、IX等。
2025-05-22 17:00:00
928
原创 《Android 应用开发基础教程》——第十四章:Android 多线程编程与异步任务机制(Handler、AsyncTask、线程池等)
场景方法Thread → 主线程或AsyncTask → 主线程ExecutorService → 主线程Android 中的 UI 必须在主线程更新,耗时任务需放入子线程执行Handler 是 Android 最基础的线程通信工具AsyncTask 封装了常见的异步模式(但已被弃用)Executor 提供了线程池管理机制,适合并发任务Kotlin 推荐使用协程,Java 可用线程池 + Handler 配合实现异步任务📢第十五章:Android 动画机制详解(属性动画、帧动画、过渡动画)
2025-05-22 12:26:37
1691
原创 力扣热题——零数组变换 ||
通过处理查询操作,将整数数组 nums 变为零数组,并找到最小的查询次数 k。每个查询操作允许在指定范围内减少数组元素的值,且每个元素的减少量可以独立选择。通过二分查找和差分数组技术,可以高效地解决该问题。具体步骤包括:1) 使用二分查找确定最小的 k;2) 通过差分数组记录查询操作对数组的影响;3) 计算前缀和,验证是否可以将数组变为零数组。该解法的时间复杂度为 O(nlogq),空间复杂度为 O(n),适用于大规模数据。
2025-05-21 14:15:00
1710
原创 论文研读——《RADAR:稳健的两阶段模态不完全工业异常检测》
本文提出了RADAR,一种针对模态不完全问题的两阶段工业异常检测框架,通过在训练阶段引入模态对齐感知模块(MAA)学习多模态共享表示,并在推理阶段利用模态鲁棒融合模块(MRF)实现对缺失模态的自适应处理,结合模态Dropout策略提升鲁棒性,在不依赖大规模预训练模型的条件下,有效提升了多模态异常检测在模态缺失场景下的精度与稳定性。
2025-05-21 09:11:29
907
原创 力扣热题——零数组变换 |
本文介绍了力扣题目“零数组变换I”的解法,核心在于判断数组能否通过一系列查询操作归零。解法一采用前缀和与差分数组技术,高效统计每个元素被查询区间覆盖的次数,并验证是否足够使其归零。文章提供了Java和C++的实现代码,并分析了时间复杂度和空间复杂度。时间复杂度为O(n+q),空间复杂度为O(n),适用于大规模数据处理。通过这种方法,能够快速判断数组是否可以通过给定查询操作转换为零数组。
2025-05-20 17:00:00
1018
1
原创 《Android 应用开发基础教程》——第十三章:权限管理机制与运行时权限请求(以拍照/存储为例)
危险权限必须同时在 manifest 和代码中动态申请权限检查流程必须覆盖所有可能状态(已授权、拒绝、永久拒绝)拍照、存储、定位是最常见的权限请求场景从 Android 10 起应考虑适配“分区存储(scoped storage)”📢第十四章:Android 多线程编程与异步任务机制(Handler、AsyncTask、线程池等)
2025-05-20 12:41:46
1100
原创 力扣热题——三角形类型(不会的话你似人啊)
这道题目要求判断由三个整数构成的三角形类型。解决思路分为两步:首先,根据三角形不等式定理判断是否能构成三角形,即检查最小两个数之和是否大于最大数;其次,若满足三角形条件,进一步判断边的相等情况,确定是等边三角形、等腰三角形还是普通三角形。文章提供了Java、C++、C和Python四种语言的实现代码,并分析了算法的时间复杂度和空间复杂度,均为O(1),因为输入规模固定为3,排序和条件判断的操作次数恒定。
2025-05-19 14:00:00
920
原创 论文研读——《面向工业检测任务的文本对齐异常骨干模型》
TAB 是一个通过图文对齐预训练出来的图像编码器模块,专门为工业异常检测任务提供更有效的特征表达,它本身不执行检测,只优化检测性能。特征嵌入向量就是模型对输入(如图像或文本)的高维表示结果,它将原始输入映射到一个在语义上有意义的向量空间中,用以表达“这是什么”或“它像什么”。特征嵌入向量是 TAB 模型输出的精华表达,是原始图像或文本在高维空间中、可度量相似度的语义表示。它是后续异常检测算法进行分析和判断的基础输入。
2025-05-19 08:53:57
748
原创 力扣热题——数组的最小相等和
题目要求将两个数组中的所有0替换为严格正整数,并使两个数组的元素和相等,返回最小相等和,若无法实现则返回-1。解法思路如下:首先计算两个数组中非零元素的总和(sum1和sum2)以及零的数量(zero1和zero2)。然后根据零的数量分情况处理:若两个数组都没有零,直接比较sum1和sum2;若其中一个数组没有零,则另一个数组的总和必须调整到与无零数组的总和相等;若两个数组都有零,则取两个数组的最小可能总和的较大者。Java和C++的实现代码均通过遍历数组统计非零和零的数量,并根据不同情况进行判断。时间复杂
2025-05-18 11:50:06
860
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人