Given a binary tree, determine if it is a valid binary search tree (BST).
Assume a BST is defined as follows:
The left subtree of a node contains only nodes with keys less than the node’s key.
The right subtree of a node contains only nodes with keys greater than the node’s key.
Both the left and right subtrees must also be binary search trees.
Example 1:
2
/ \
1 3
Binary tree [2,1,3], return true.
Example 2:
1
/ \
2 3
Binary tree [1,2,3], return false.
Subscribe to see which companies asked this question.
【解析】
题意:判断一个二叉树是否为二分查找树。
何为二分查找树?1) 左子树的值都比根节点小;2) 右子树的值都比根节点大;3) 左右子树也必须满足上面两个条件。
需要注意的是,左子树的所有节点都要比根节点小,而非只是其左孩子比其小,右子树同样。这是很容易出错的一点是,很多人往往只考虑了每个根节点比其左孩子大比其右孩子小。我们对有序二叉树进行中序遍历得到的是一个有序的排列数组,从而可以进行判断。
代码如下:
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
public class Solution {
List<Integer> list = new ArrayList<Integer>();
public boolean isValidBST(TreeNode root) {
if (root == null) return true;
if (root.left == null && root.right == null) return true;
inOrderTraversal(root);
for (int i = 1; i < list.size(); i++) {
if (list.get(i) <= list.get(i - 1)) return false;
}
return true;
}
public void inOrderTraversal(TreeNode root) {
if (root == null) return;
inOrderTraversal(root.left);
list.add(root.val);
inOrderTraversal(root.right);
}
}