概率公式中的分号、逗号、竖线

本文详细解析了GDAS(Gradient-based One-shot Architecture Search)中的优化目标公式,探讨了分号、逗号和竖线在概率分布表达式中的含义。分号表示条件分布与模型参数的区分,逗号用于表示联合概率,而竖线则代表条件概率。通过理解这些符号的优先级和用法,有助于深入理解自动机器学习架构搜索中的数学基础。

【2021-07-02更新】补充一个例子:GDAS中有这样一个公式:

min⁡αE(x′,y′)∼DV−log⁡Pr⁡(y′∣x′;α,ωα∗) s.t. ωα∗=arg⁡min⁡ωE(x,y)∼DT−log⁡Pr⁡(y∣x;α,ωα) \begin{array}{r} \min _{\alpha} \mathbb{E}_{\left(x^{\prime}, y^{\prime}\right) \sim \mathbb{D}_{V}}-\log \operatorname{Pr}\left(y^{\prime} \mid x^{\prime} ; \alpha, \omega_{\alpha}^{*}\right) \\ \text { s.t. } \omega_{\alpha}^{*}=\arg \min _{\omega} \mathbb{E}_{(x, y) \sim \mathbb{D}_{T}}-\log \operatorname{Pr}\left(y \mid x ; \alpha, \omega_{\alpha}\right) \end{array} minαE(x,y)DVlogPr(yx;α,ωα) s.t. ωα=argminωE(x,y)DTlogPr(yx;α,ωα)

其中这个 Pr⁡(y∣x;α,ωα∗)\operatorname{Pr}\left(y \mid x ; \alpha, \omega_{\alpha}^{*}\right) Pr(yx;α,ωα)
可以用以下内容进行分析,这个公式中同时出现了;| ,这就需要确定一下优先级,否则没办法开始理解,而这里分号优先级比较高。

可以这样划分为前边部分: y∣xy \mid xyxα,ωα\alpha, \omega_{\alpha}α,ωα, 前边代表一个条件分布,后边代表其中参与的参数,这样一来就清晰了。

分号

P(x;θ) P(x;\theta) P(x;θ)

可以看作变量θ\thetaθ的函数,x代表确定的采样值,加一个θ\thetaθ是代表待估参数。

记忆: 分号代表前后是两类东西,分号前面是x样本,分号后边是模型参数。

逗号

P(A,B)=P(AB) P(A,B)=P(AB) P(A,B)=P(AB)

表示 A和B事件同时发生的概率,是联合概率分布。逗号在这里分开两个事件,有“与”的关系

逗号的优先级高于竖线。

记忆: 逗号代表两者地位平等,代表与的关系

竖线

P(A∣B) P(A|B) P(AB)

大多数情况下表示条件概率,表示在B的条件下A发生的概率。

不代表条件概率的时候,与P(A;B)P(A;B)P(A;B)等价

记忆:竖线代表 if,一上面为例,就是如果发生B,发生A事件的概率。

参考

https://blog.csdn.net/qq_34269988/article/details/88885045

https://blog.csdn.net/pipisorry/article/details/42715245

评论 2
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

*pprp*

如果有帮助可以打赏一杯咖啡

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值