概率公式中的分号、逗号、竖线

本文详细解析了GDAS(Gradient-based One-shot Architecture Search)中的优化目标公式,探讨了分号、逗号和竖线在概率分布表达式中的含义。分号表示条件分布与模型参数的区分,逗号用于表示联合概率,而竖线则代表条件概率。通过理解这些符号的优先级和用法,有助于深入理解自动机器学习架构搜索中的数学基础。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

【2021-07-02更新】补充一个例子:GDAS中有这样一个公式:

min ⁡ α E ( x ′ , y ′ ) ∼ D V − log ⁡ Pr ⁡ ( y ′ ∣ x ′ ; α , ω α ∗ )  s.t.  ω α ∗ = arg ⁡ min ⁡ ω E ( x , y ) ∼ D T − log ⁡ Pr ⁡ ( y ∣ x ; α , ω α ) \begin{array}{r} \min _{\alpha} \mathbb{E}_{\left(x^{\prime}, y^{\prime}\right) \sim \mathbb{D}_{V}}-\log \operatorname{Pr}\left(y^{\prime} \mid x^{\prime} ; \alpha, \omega_{\alpha}^{*}\right) \\ \text { s.t. } \omega_{\alpha}^{*}=\arg \min _{\omega} \mathbb{E}_{(x, y) \sim \mathbb{D}_{T}}-\log \operatorname{Pr}\left(y \mid x ; \alpha, \omega_{\alpha}\right) \end{array} min

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

*pprp*

如果有帮助可以打赏一杯咖啡

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值