背包问题之多重背包练习
这里给出崔添翼大牛的背包九讲--------------------崔添翼的个人网站
这里给出题目链接--------------D - Coins 多重背包(即hdu2844)
多重背包最简单的思路就是讲每一个物品转换为01背包,为了减少复杂度我们将每一个n转换为几个2进制得数相加。
最后用01背包方程求解即可。
#include<bits/stdc++.h>
const int maxn=100005;
using namespace std;
int dp[maxn],val[maxn];
int main()
{
int n,m,i,j,k,a[105],c[105],cnt;
while(~scanf("%d%d",&n,&m)&&(n+m))
{
for(i = 1; i<=n; i++)
scanf("%d",&a[i]);
cnt=0;
memset(dp,0,sizeof(dp));
for(i = 1; i<=n; i++)
{
scanf("%d",&c[i]);
for(j = 1; j<=c[i]; j<<=1)
val[cnt++]=j*a[i],c[i]-=j;
if(c[i]>0)
val[cnt++]=c[i]*a[i];
}
for(i = 0; i<cnt; i++)
for(j = m; j>=val[i]; j--)
dp[j]=dp[j]>(dp[j-val[i]]+val[i])?dp[j]:(dp[j-val[i]]+val[i]); //max超时
int cn=0;
for(i = 1; i<=m; i++)
if(dp[i]==i)
cn++;
cout<<cn<<endl;
}
return 0;
}
本题数据较大,使用max函数或使用*=2而非<<=1有可能会超时。
也有更优算法如使用单调队列进行优化。