想在你的 Mac Mini M4 上体验 LLaMA-Factory 的强大功能,进行大模型微调和训练吗?本篇文章为你准备了详细的环境配置教程,强烈建议使用 Conda 来管理你的 Python 环境,避免各种潜在的依赖冲突。跟着以下步骤,一步步搭建你的 LLaMA-Factory !
-
确认 Python 环境 (强烈建议使用 Conda) • 检查 Python 版本 首先,打开你的终端,输入以下命令来检查 Python 版本:
python3 --version
请确保你的 Python 版本是 3.9 或更高,强烈推荐使用 3.10。如果你的版本过低或者没有安装 Python 3,请继续阅读下面的 Miniconda 安装步骤。
• 安装 Miniconda (强烈推荐) Miniconda 是管理 Python 环境的最佳实践,它可以帮助你轻松创建和管理独立的 Python 环境,避免不同项目之间的包冲突。
下载: 访问 Miniconda 官网下载适合 Apple Silicon (M 系列芯片) 的 macOS 安装包: https://docs.conda.io/projects/miniconda/en/latest/ 选择 Miniconda3 macOS Apple M1 64-bit pkg (推荐) 或 Miniconda3 macOS Apple M1 64-bit bash。
安装:
如果你下载的是 .pkg 文件: 双击下载的文件,按照图形界面提示进行安装。通常一路“下一步”即可,建议安装到默认位置并选择“为当前用户安装”。
如果你下载的是 .sh 文件: 在终端中运行以下命令(请注意替换文件名):
bash Miniconda3-latest-MacOSX-arm64.sh
按照提示进行安装,同样建议安装到默认位置并选择“为当前用户安装”。
初始化 Conda: 安装完成后,通常安装程序会自动配置。如果没有自动配置,请打开终端并运行以下命令(根据你使用的 Shell 选择):
如果你使用的是 zsh (默认):
/Users/你的用户名/miniconda3/bin/conda init zsh
如果你使用的是 bash:
/Users/你的用户名/miniconda3/bin/conda init bash
请将 /Users/你的用户名/miniconda3 替换为你的实际 Miniconda 安装路径。
重启终端: 关闭当前终端窗口,然后重新打开一个新的终端窗口,或者运行以下命令使配置生效:
zsh:
source ~/.zshrc
bash:
source ~/.bash_profile
验证: 在终端中输入以下命令,如果显示 Conda 的版本号,则表示 Miniconda 安装成功:
conda --version
• 创建 Conda 环境 接下来,为 LLaMA-Factory 创建一个独立的 Conda 环境,以避免与其他项目的依赖冲突:
conda create -n llama-factory python=3.10
创建完成后,激活这个环境:
conda activate llama-factory
你的终端提示符前面应该会出现 (llama-factory),表示你已成功进入该环境。
-
安装 PyTorch (Metal 加速) 在激活的 llama-factory Conda 环境中,安装支持 Metal GPU 加速的 PyTorch nightly 版本:
pip install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/cpu
注意:
如果你之前安装过普通的 PyTorch: 务必先卸载它们,避免冲突:
pip uninstall torch torchvision torchaudio
这里我们安装的是 CPU 版本的 nightly build,PyTorch 会自动利用 Metal 进行 GPU 加速,无需安装特定的 Metal 版本。
-
安装 LLaMA-Factory 及其依赖 首先,你需要将 LLaMA-Factory 的代码克隆到你的本地。如果你已经下载了压缩包并解压,请进入解压后的 LLaMA-Factory-main 文件夹:
cd path/to/your/LLaMA-Factory-main # 将 "path/to/your" 替换为你的实际路径
然后,你可以选择以下两种方式安装 LLaMA-Factory:
• 方式一:使用 pip install -e . (推荐 - 可编辑模式)
pip install -e .
这种方式会将 LLaMA-Factory 以“可编辑”模式安装到你的环境中。这意味着如果你修改了 LLaMA-Factory 的源代码,这些更改会立即生效,无需重新安装,非常方便开发者。
• 方式二:使用 pip install . (普通安装)
pip install .
无论是哪种方式,pip 都会自动安装 LLaMA-Factory 所需的依赖项,包括 transformers, datasets, accelerate, peft 等。
如果在安装过程中因为网络问题出现超时,可以尝试更换 pip 源,或者多试几次。
-
(可选) 安装 bitsandbytes (用于量化,如果内存非常紧张) 如果你在训练过程中遇到显存不足的问题,可以考虑安装 bitsandbytes 来进行模型量化,降低显存占用。
pip install bitsandbytes
注意: bitsandbytes 在 macOS 上的安装有时可能会比较麻烦,可能会遇到编译错误。如果遇到问题,可以先跳过这一步,在后续训练时如果确实需要再尝试安装。可以尝试搜索相关的 macOS bitsandbytes 安装教程。
-
(可选) 安装 Wandb (用于实验跟踪) 如果你希望更好地跟踪和可视化你的训练过程,可以使用 Wandb (Weights & Biases)。
pip install wandb
你需要注册一个 Wandb 账号(免费的个人账号即可),然后在终端中运行以下命令并按照指示进行登录:
wandb login
-
验证安装 安装完成后,你可以通过运行 LLaMA-Factory 的命令行工具来验证安装是否成功:
llamafactory-cli --help
如果能显示 LLaMA-Factory 的帮助信息,则说明安装基本成功。
你也可以尝试启动 WebUI:
llamafactory-cli webui
如果能够正常打开网页界面,那么恭喜你,LLaMA-Factory 的环境已经基本配置完毕!
总结步骤 为了方便大家回顾,以下是完整的安装步骤:
安装 Miniconda (强烈推荐)
创建 Conda 环境: conda create -n llama-factory python=3.10
激活 Conda 环境: conda activate llama-factory
安装 PyTorch (Metal): pip install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/cpu
进入 LLaMA-Factory 目录: cd path/to/your/LLaMA-Factory-main
安装 LLaMA-Factory: pip install -e . (推荐) 或 pip install .
(可选)安装 bitsandbytes: pip install bitsandbytes
(可选)安装 wandb: pip install wandb
验证: llamafactory-cli --help 或 llamafactory-cli webui
按照以上步骤,你就能在你的 Mac Mini M4 上成功搭建 LLaMA-Factory 的运行环境了。接下来就可以开始准备你的数据集,配置训练参数,开启你的大模型微调之旅啦!
如果在安装过程中遇到任何问题,欢迎随时在评论区提问,我们会尽力帮助你解决!祝你使用 LLaMA-Factory 愉快! 😊
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!
在这个版本当中:
第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言
您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
五、AI产品经理大模型教程
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓