【Mac用户必看】Mac Mini完美运行LLaMA-Factory!手把手安装教程来了

 想在你的 Mac Mini M4 上体验 LLaMA-Factory 的强大功能,进行大模型微调和训练吗?本篇文章为你准备了详细的环境配置教程,强烈建议使用 Conda 来管理你的 Python 环境,避免各种潜在的依赖冲突。跟着以下步骤,一步步搭建你的 LLaMA-Factory !

  1. 确认 Python 环境 (强烈建议使用 Conda) • 检查 Python 版本 首先,打开你的终端,输入以下命令来检查 Python 版本:

python3 --version

请确保你的 Python 版本是 3.9 或更高,强烈推荐使用 3.10。如果你的版本过低或者没有安装 Python 3,请继续阅读下面的 Miniconda 安装步骤。

• 安装 Miniconda (强烈推荐) Miniconda 是管理 Python 环境的最佳实践,它可以帮助你轻松创建和管理独立的 Python 环境,避免不同项目之间的包冲突。

下载: 访问 Miniconda 官网下载适合 Apple Silicon (M 系列芯片) 的 macOS 安装包: https://docs.conda.io/projects/miniconda/en/latest/ 选择 Miniconda3 macOS Apple M1 64-bit pkg (推荐) 或 Miniconda3 macOS Apple M1 64-bit bash。

安装:

如果你下载的是 .pkg 文件: 双击下载的文件,按照图形界面提示进行安装。通常一路“下一步”即可,建议安装到默认位置并选择“为当前用户安装”。

如果你下载的是 .sh 文件: 在终端中运行以下命令(请注意替换文件名):

bash Miniconda3-latest-MacOSX-arm64.sh

按照提示进行安装,同样建议安装到默认位置并选择“为当前用户安装”。

初始化 Conda: 安装完成后,通常安装程序会自动配置。如果没有自动配置,请打开终端并运行以下命令(根据你使用的 Shell 选择):

如果你使用的是 zsh (默认):

/Users/你的用户名/miniconda3/bin/conda init zsh

如果你使用的是 bash:

/Users/你的用户名/miniconda3/bin/conda init bash

请将 /Users/你的用户名/miniconda3 替换为你的实际 Miniconda 安装路径。

重启终端: 关闭当前终端窗口,然后重新打开一个新的终端窗口,或者运行以下命令使配置生效:

zsh:

source ~/.zshrc

bash:

source ~/.bash_profile

验证: 在终端中输入以下命令,如果显示 Conda 的版本号,则表示 Miniconda 安装成功:

conda --version

• 创建 Conda 环境 接下来,为 LLaMA-Factory 创建一个独立的 Conda 环境,以避免与其他项目的依赖冲突:

conda create -n llama-factory python=3.10

创建完成后,激活这个环境:

conda activate llama-factory

你的终端提示符前面应该会出现 (llama-factory),表示你已成功进入该环境。

  1. 安装 PyTorch (Metal 加速) 在激活的 llama-factory Conda 环境中,安装支持 Metal GPU 加速的 PyTorch nightly 版本:

pip install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/cpu

注意:

如果你之前安装过普通的 PyTorch: 务必先卸载它们,避免冲突:

pip uninstall torch torchvision torchaudio

这里我们安装的是 CPU 版本的 nightly build,PyTorch 会自动利用 Metal 进行 GPU 加速,无需安装特定的 Metal 版本。

  1. 安装 LLaMA-Factory 及其依赖 首先,你需要将 LLaMA-Factory 的代码克隆到你的本地。如果你已经下载了压缩包并解压,请进入解压后的 LLaMA-Factory-main 文件夹:

cd path/to/your/LLaMA-Factory-main # 将 "path/to/your" 替换为你的实际路径

然后,你可以选择以下两种方式安装 LLaMA-Factory:

• 方式一:使用 pip install -e . (推荐 - 可编辑模式)

pip install -e .

这种方式会将 LLaMA-Factory 以“可编辑”模式安装到你的环境中。这意味着如果你修改了 LLaMA-Factory 的源代码,这些更改会立即生效,无需重新安装,非常方便开发者。

• 方式二:使用 pip install . (普通安装)

pip install .

无论是哪种方式,pip 都会自动安装 LLaMA-Factory 所需的依赖项,包括 transformers, datasets, accelerate, peft 等。

如果在安装过程中因为网络问题出现超时,可以尝试更换 pip 源,或者多试几次。

  1. (可选) 安装 bitsandbytes (用于量化,如果内存非常紧张) 如果你在训练过程中遇到显存不足的问题,可以考虑安装 bitsandbytes 来进行模型量化,降低显存占用。

pip install bitsandbytes

注意: bitsandbytes 在 macOS 上的安装有时可能会比较麻烦,可能会遇到编译错误。如果遇到问题,可以先跳过这一步,在后续训练时如果确实需要再尝试安装。可以尝试搜索相关的 macOS bitsandbytes 安装教程。

  1. (可选) 安装 Wandb (用于实验跟踪) 如果你希望更好地跟踪和可视化你的训练过程,可以使用 Wandb (Weights & Biases)。

pip install wandb

你需要注册一个 Wandb 账号(免费的个人账号即可),然后在终端中运行以下命令并按照指示进行登录:

wandb login
  1. 验证安装 安装完成后,你可以通过运行 LLaMA-Factory 的命令行工具来验证安装是否成功:

llamafactory-cli --help

如果能显示 LLaMA-Factory 的帮助信息,则说明安装基本成功。

你也可以尝试启动 WebUI:

llamafactory-cli webui

如果能够正常打开网页界面,那么恭喜你,LLaMA-Factory 的环境已经基本配置完毕!

总结步骤 为了方便大家回顾,以下是完整的安装步骤:

安装 Miniconda (强烈推荐)

创建 Conda 环境: conda create -n llama-factory python=3.10

激活 Conda 环境: conda activate llama-factory

安装 PyTorch (Metal): pip install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/cpu

进入 LLaMA-Factory 目录: cd path/to/your/LLaMA-Factory-main

安装 LLaMA-Factory: pip install -e . (推荐) 或 pip install .

(可选)安装 bitsandbytes: pip install bitsandbytes

(可选)安装 wandb: pip install wandb

验证: llamafactory-cli --help 或 llamafactory-cli webui

按照以上步骤,你就能在你的 Mac Mini M4 上成功搭建 LLaMA-Factory 的运行环境了。接下来就可以开始准备你的数据集,配置训练参数,开启你的大模型微调之旅啦!

如果在安装过程中遇到任何问题,欢迎随时在评论区提问,我们会尽力帮助你解决!祝你使用 LLaMA-Factory 愉快! 😊

 如何系统的去学习大模型LLM ?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

事实上,抢你饭碗的不是AI,而是会利用AI的人。

科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

与其焦虑……

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!

在这个版本当中:

第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言

您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

一、LLM大模型经典书籍

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

在这里插入图片描述

二、640套LLM大模型报告合集

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
在这里插入图片描述

三、LLM大模型系列视频教程

在这里插入图片描述

四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

在这里插入图片描述

五、AI产品经理大模型教程

在这里插入图片描述

LLM大模型学习路线 

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。

  • 内容

    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

  • 内容

    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.3 流水线工程
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

  • 内容

    • L3.1 Agent模型框架
    • L3.2 MetaGPT
    • L3.3 ChatGLM
    • L3.4 LLAMA
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

  • 内容

    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值