在构建聊天机器人时,对话历史记录是提升用户体验的核心功能之一,用户希望机器人能够记住之前的对话内容,从而避免重复提问。LangGraph 是 LangChain 生态中一个工具,通过将应用逻辑组织成有向图(Graph)的形式,可以轻松实现对话历史的管理和复杂的对话流程。本文将通过一个示例,展示如何使用 LangGraph 实现这一功能。
在上一篇博客中提到,链(Chain)在 LangChain 中是一种基本的构建块,用于将多个 LLM 调用和工具调用链接在一起。然而,链在处理复杂、动态的对话流程时存在一些局限性,例如,链通常是线性的,这种线性结构只能按照预定义的顺序执行,限制了在对话中进行动态路由和条件分支的能力。LangGraph 的设计目标是提供一个更灵活、更强大的框架来构建复杂的智能体应用。
LangGraph | LangChain | |
---|---|---|
核心设计 | 循环图结构:支持条件分支、循环和反馈机制,适合复杂多步骤任务。 | 线性流程(DAG):以链式结构为主,适合线性任务(如文档检索、文本生成)。 |
控制能力 | 高度可控:通过节点(Node)和边(Edge)精细控制流程,支持条件逻辑和动态修改。 | 中等可控:依赖链式编排,灵活性较低,难以处理复杂循环或动态分支。 |
持久化与状态管理 | 内置持久化:支持状态检查点(Checkpoints),可中断/恢复任务,适合长期任务。 | 基础记忆功能:依赖对话历史记录,但无法持久化复杂状态或跨会话共享。 |
人在环(Human-in-the-Loop) | 深度支持:可在任意节点插入人工审核、干预,适合医疗、金融等需人工决策的场景。 | 弱支持:需手动集成人工干预逻辑,流程中断后难以恢复。 |
多代理(Multi-Agent) | 原生支持:通过共享状态实现多Agent协作,适合复杂任务拆分与协同。 | 较弱:需手动协调多个链,难以实现动态任务分配。 |
错误处理 | 容错性强:支持失败节点跳转或重试,流程可恢复。 | 基础重试:依赖单链重试,无法处理复杂流程中的错误传播。 |
适用场景 | 复杂多步骤任务、需人工干预的场景(如医疗诊断)、多Agent协作系统、长期任务(如持续对话) | 线性任务(文档检索、文本生成)、快速原型开发、简单对话系统 |
开发复杂度 | 中等:需定义节点、边和状态,但提供了灵活的编排能力。 | 低:开箱即用的链式结构,适合快速开发。 |
基础概念
LangGraph 的核心是 State Graph,它通过状态(State)、节点(Node)和边(Edge)的组合,定义对话的流程和逻辑。每个状态可以保存对话的上下文(如历史消息、总结等),节点定义了在不同状态下如何处理输入和生成输出,边定义了处理流程。
- State(状态)
用于存储对话中的临时数据,例如用户消息、模型响应、总结内容等。例如class State(MessagesState): messages: str
表示一个状态,其中messages
字段用于存储对话的具体信息。 - Node(节点)
定义了对话流程中的具体操作,通常是具体的函数,例如调用模型、判断是否需要总结、生成总结等。 - Edge(边)
用于连接不同的节点,定义了节点之间的关系和流程。边可以包含条件逻辑、循环、分支等,用于控制对话流程的走向。
我们来看一个最简单的示例,下图是一个 LangGraph 实现的聊天机器人。
起始节点为 __start__
,结束节点为 __end__
,chatbot
表示调用大模型处理对话。__start__
节点存储了应用的 State
数据。节点之间带箭头的线段表示边,实线代表普通边 →
,虚线代表条件边 ⇢
,条件边根据当前的具体条件而选择哪一条边执行,选择不同的边,则到达的节点不同。
环境搭建与配置
在上一篇博客创建的 Python 虚拟环境中执行以下命令,安装需要的包:
pip install langgraph langgraph-checkpoint-postgres psycopg[binary,pool]
将对话历史存储至内存
在开始之前,先构建一个图,实现一个最简单的聊天机器人。
from typing import Annotated
from typing_extensions import TypedDict
from langgraph.graph import StateGraph, START, END
from langgraph.graph.message import add_messages
from langchain_ollama import ChatOllama
class State(TypedDict):
"""存储对话状态信息"""
messages: Annotated[list, add_messages]
def chatbot(state: State):
"""调用模型处理对话"""
return {"messages": [llm.invoke(state["messages"])]}
llm = ChatOllama(model="qwen2.5:1.5b")
# 创建图
graph_builder = StateGraph(State)
graph_builder.add_node("chatbot", chatbot) # 添加节点
graph_builder.add_edge(START, "chatbot") # 添加边
graph_builder.add_edge("chatbot", END)
graph = graph_builder.compile()
使用下面的代码输出图的结构:
png = graph.get_graph().draw_mermaid_png()
with open("chatbot.png", "wb") as f:
f.write(png)
接下来,使用 graph.stream()
方法执行图,即可开始对话。
events = graph.stream({"messages": [{"role": "user", "content": "你可以做些什么?"}]})
for event in events:
last_event = event
print("AI: ", last_event["messages"][-1].content)
下面使用 MemorySaver
将对话历史存储在内存中。
from langgraph.checkpoint.memory import MemorySaver
checkpointer = MemorySaver()
# 创建图
# ...
graph = graph_builder.compile(checkpointer=checkpointer)
在对话时要记录对话历史,还需要在 graph.stream()
方法中传入 config
参数,thread_id
用于标识对话的唯一性,不同的对话 thread_id
不同。
import uuid
config = {"configurable": {"thread_id": uuid.uuid4().hex}}
events = graph.stream({"messages": [{"role": "user", "content": "你好,我的名字是张三"}]}, config)
最后,我们将对话的代码封装成 stream_graph_updates()
方法,通过对话检测一下历史信息是否被正确保存。
def stream_graph_updates(user_input: str, config: dict):
"""对话"""
events = graph.stream({"messages": [{"role": "user", "content": user_input}]}, config, stream_mode="values")
for event in events:
last_event = event
print("AI: ", last_event["messages"][-1].content)
if __name__ == "__main__":
config = {"configurable": {"thread_id": uuid.uuid4().hex}}
while True:
user_input = input("User: ") # 用户输入问题进行对话
if user_input.lower() in ["exit", "quit"]:
break
stream_graph_updates(user_input, config)
print("\nHistory: ") # 输出对话历史
for message in graph.get_state(config).values["messages"]:
if isinstance(message, AIMessage):
prefix = "AI"
else:
prefix = "User"
print(f"{prefix}: {message.content}")
User: 你好,我的名字是张三
AI: 你好!很高兴认识你。有什么可以帮忙的吗?
User: 我叫什么名字
AI: 你的名字确实是“张三”。很高兴认识你!有什么问题或需要帮助的地方吗?
将对话历史存储至 PostgreSQL
对话历史存储至内存中,当应用关闭时,对话历史也会消失,有时无法满足持久化的需求。LangGraph 提供了一些数据库持久化方式,支持的数据库有 PostgreSQL、MongoDB、Redis。下面使用 PostgreSQL 数据库为例。在开始之前,执行以下命令创建一个 PostgreSQL 数据库:
psql -U postgres -c "CREATE DATABASE llm"
接着,在代码中替换 MemorySaver
为 PostgresSaver
,连接并初始化数据库:
from psycopg import Connection
from langgraph.checkpoint.postgres import PostgresSaver
DB_URI = "postgresql://postgres:YOUR_PASSW0RD@localhost:5432/llm" # 记得替换数据库密码
conn = Connection.connect(DB_URI) # 连接数据库
checkpointer = PostgresSaver(conn)
checkpointer.setup() # 初始化数据库
使用数据库管理工具查看数据库,可以看到 LangGraph 在数据库初始化时帮我们创建了四张表:checkpoint
、checkpoint_blobs
、checkpoint_writes
、checkpoint_migrations
。
完整的程序代码如下:
import uuid
from typing import Annotated
from typing_extensions import TypedDict
from langgraph.graph import StateGraph, START, END
from langgraph.graph.message import add_messages
from langchain_ollama import ChatOllama
from langchain_core.messages import AIMessage, HumanMessage
from psycopg import Connection
from langgraph.checkpoint.postgres import PostgresSaver
class State(TypedDict):
messages: Annotated[list, add_messages]
def chatbot(state: State):
return {"messages": [llm.invoke(state["messages"])]}
DB_URI = "postgresql://postgres:%40Passw0rd@localhost:5432/llm"
llm = ChatOllama(model="qwen2.5:1.5b")
conn = Connection.connect(DB_URI)
checkpointer = PostgresSaver(conn)
checkpointer.setup()
graph_builder = StateGraph(State)
graph_builder.add_node("chatbot", chatbot)
graph_builder.add_edge(START, "chatbot")
graph_builder.add_edge("chatbot", END)
graph = graph_builder.compile(checkpointer=checkpointer)
def stream_graph_updates(user_input: str, config: dict):
events = graph.stream({"messages": [{"role": "user", "content": user_input}]}, config, stream_mode="values")
for event in events:
last_event = event
print("AI: ", last_event["messages"][-1].content)
if __name__ == "__main__":
config = {"configurable": {"thread_id": uuid.uuid4().hex}}
while True:
user_input = input("User: ")
if user_input.lower() in ["exit", "quit"]:
break
stream_graph_updates(user_input, config)
print("\nHistory: ")
for message in checkpointer.get(config)["channel_values"]["messages"]:
if isinstance(message, AIMessage):
prefix = "AI"
else:
prefix = "User"
print(f"{prefix}: {message.content}")
conn.close()
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!
在这个版本当中:
第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言
您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
五、AI产品经理大模型教程
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓