关于sklearn中的pipeline和GridSearchCV相结合寻找最优参数的方法

所谓pipeline,就是由一系列数据转换步骤或待拟合模型(如果有,则模型必须处于管道末端)构成的加工链条,最大的作用就是将两个模型串联起来

在本次实验中,我需要使用评论进行情感分析,但是svm没办法直接接收文本数据,所以我首先使用pipeline将TFIDF和SVM进行串联,如图所示:

串联好了以后,我需要使用GridSearchCV找到最优参数, 刚开始的时候,我直接使用字典设置相关参数,如图:

 没想到直接抛出了异常:key错误

 很明显,直接设置参数模型并不知道这个参数属于哪一个模型,于是通过查阅官方文档发现了如下代码

可以看出来,同样是两个模型串联,同

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值