组合数学中的项链计数


给c种不同颜色宝石能穿成多少种长度为s的宝石项链(本质不同)



Burnside定理的应用:

当n为奇数时,有n种翻转,每种翻转都是以一个顶点和该顶点对边的中点对称。有k^(n/2+1)*n种。

当n为偶数时,有n种翻转,其中一半是以两个对应顶点,另一半是以两条对边对称。有k^(n/2+1)*n/2+k^(n/2)*n/2种。

考虑旋转:枚举旋转角度360/n*i,(0<i<=n),也就是一个置换。经过该置换,颜色仍保持不变的着色方案有k^GCD(n,i)种。

 

一个长度为n的环,每i个上同一种颜色,可以上多少种颜色。

假设起点在x,则x,x+i,x+2*i,……,x+k*i,……

假设在第t次,第一次回到起点,则x=(x+t*i)%n => t*i%n=0 => t=LCM(i,n)/i=n*i/GCD(n,i)/i=n/GCD(n,i)。

那么可以上n/t种颜色,即n/(n/GCD(n,i))种,所以旋转的着色方案有k^GCD(n,i)种。



#include<cstdio>
#include<iostream>

using namespace std;


typedef long long ll;

ll power(ll a,ll b)
{
    ll ans=1ll;
    while(b)
    {
        if(b&1)
        ans=ans*a;
        a=a*a;
        b=b>>1;
    }
    return ans;
}
ll gcd(ll a,ll b)
{
    return b ? gcd(b,a%b)  :  a;
}
int main()
{
    int c,s;
    ll ans;
    while(scanf("%d%d",&c,&s)!=EOF)
    {
        if(s&1)
        ans=power(c,s/2+1)*s;
        else
        ans=power(c,s/2)*(s/2)+power(c,s/2+1)*(s/2);
        for(int i=1;i<=s;i++)
        ans+=power(c,gcd(s,i));
        printf("%lld\n",(ans/2)/s);
    }
    return 0;
}



  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值