import csv
import json
from concurrent.futures import ThreadPoolExecutor, ProcessPoolExecutor # 导入线程池和进程池
import requests
# 创建数据表
file = open(r"D:\桌面\北京新发地数据爬取.csv", mode="w", encoding="utf-8",newline='')
file_csv = csv.writer(file)
file_csv.writerow(["ClassFication", "Name", "low-price", "mean-price", "high-price", "release-time"])
def download_one_page(url, page):
# 请求头信息
param = {
"count": "359009",
"current": f"{page}",
"limit": "20"
}
# 拿到页面源代码
resp = requests.get(url,params=param)
res_dic = json.loads(resp.text)
res_list = res_dic["list"]
for i in res_list:
print(i["prodCat"], i["prodName"], i["lowPrice"], i["avgPrice"], i["highPrice"], i["pubDate"])
python 爬取北京新发地市场的数据
最新推荐文章于 2023-07-16 00:50:18 发布
本文详细介绍了如何运用Python编程语言进行网络爬虫开发,以获取北京新发地市场的实时数据。通过讲解关键的requests库进行HTTP请求,BeautifulSoup库解析HTML页面,以及数据存储的方法,读者将掌握基础的网络爬虫技术,并能实际应用到获取市场动态信息的场景中。
摘要由CSDN通过智能技术生成