自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(34)
  • 收藏
  • 关注

原创 计算机网络基础科普

IP地址是网络中标识设备的唯一地址,主要分为IPv4和IPv6两种。IPv4使用32位地址,提供约43亿个地址,采用点分十进制表示法(如192.168.0.1)。IPv6使用128位地址,解决IPv4地址耗尽问题,采用冒号分隔的十六进制表示法(如2001:0db8:85a3::8a2e:0370:7334)。IPv4地址分为A、B、C、D、E类,分别适用于不同规模的网络。A类用于大型网络,B类用于中型网络,C类用于小型局域网,D类用于多播,E类保留。网络掩码用于区分网络和主机部分,默认网关是访问其他网络的第

2025-05-10 23:55:48 904 1

原创 计算机组成原理系列3--存储系统

数据以微小的坑(凹陷)和平(凸起)的形式存储在光盘的螺旋形轨道上,激光束照射到盘片表面时,反射光的不同强度表示不同的数据状态。写入数据时,通过控制激光的强度和脉冲来改变盘片表面的物理状态,读取数据时,激光束扫描盘片表面,根据反射光的变化来还原数据。特点 :集成度高,存储容量大,读写速度快,成本低,但 DRAM 需要刷新操作,功耗相对较高,SRAM 则功耗低、速度快,但集成度相对较低。按存储介质:磁表面存储器(磁盘,磁带),磁芯存储器,半导体存储器(MOS型存储器,双极性存储器),光存储器(光盘)

2025-04-27 20:29:05 816

原创 C++ STL 容器简介(蓝桥杯适用精简版)

输入输出加速(写在最开头)万能头文件(蓝桥杯可用)结构体排序int a, b;// 按a升序建议练习方向:多刷贪心、模拟、动态规划类题目,熟练掌握这些容器的基本操作即可应对大部分蓝桥杯题目。

2025-04-23 17:29:25 276

原创 操作系统课程设计

本项目旨在深入设计与实现一套基于Java的模拟操作系统,模拟和实现常见操作系统的核心功能,包括进程管理、内存分配与调度、高效的文件系统和多样化设备的管理。我深入学习了内存分区、分页和分段等常见的内存管理技术,以及它们的优缺点。我负责的任务是设计和实现内存的分配与回收机制,这不仅要求理解操作系统的内存管理理论,还需要将这些理论知识有效地应用于实际的代码实现中。用户体验优化: 最终用户是操作系统的使用者,因此在设计和实现内存管理时,要考虑到用户体验的方面,如提供友好的错误提示和清晰的内存使用信息。

2024-12-25 21:23:10 1042

原创 汇编语言入门(持续更新)

表征指令的操作特性与功能(指令的唯一标识)不同的指令操作码不能相同。:指定参与操作的操作数的地址码。

2024-12-01 21:37:12 547

原创 JupyterNotebook超实用攻略----解决中文画图产生空格

通过了解如何安装和使用 Jupyter Notebook、探索其高效使用技巧、扩展功能、以及与其他工具的集成,你可以更好地利用它来完成各类任务。在 Jupyter Notebook 中,你可以使用 Scikit-learn、TensorFlow 等框架开发机器学习模型,调试和优化模型参数,并在同一个环境中进行可视化和报告生成。无论是进行数据分析、模型训练,还是生成报告和展示结果,Jupyter Notebook 都能提供一个便捷和灵活的工作环境,极大地提高你的工作效率和开发体验。以下是两种常见的安装方式。

2024-11-28 16:51:47 917

原创 信息论复习笔记(持续更新ing)

log3=1.585log5=2.322log7=2.8074log11=3.4594log13=3.7004概率空间信源是信息的来源,是产生消息,时间离散的消息序列(符号序列)以及时间离散的信息的来源。按是否随时间而变化分为平稳信源和非平稳信源根据随机变量之间是否独立分为有记忆信源和无记忆信源各维联合概率分布均与时间起点无关的信源称为离散平稳信源熵率(极限熵)定义为了研究离散平稳无记忆信源的熵率,假设信源每次输出的是N长序列,这可以看作是一个新信源,称为离散平稳无记忆信源的N次拓展信源对于单符号信源,用信

2024-11-24 17:51:02 398

原创 机器学习系列----关联分析

关联分析主要用于挖掘数据集中的频繁项集(Frequent Itemsets)和关联规则(Association Rules)。关联规则通常采用“如果-那么”的形式,即:如果条件 A 成立,则条件 B 成立。最常见的应用场景是市场篮子分析,在这个场景中,A 和 B 代表顾客购买的商品。关联规则通常包含三个重要的度量:支持度(Support):规则中项集的出现频率,表示在整个数据集中,A 和 B 同时出现的概率。

2024-11-18 19:25:57 2013

原创 计算机组成原理笔记----基础篇

计算机系统=硬件+软件机器字长:机器字长是指计算机处理器一次能处理的数据位数,通常表示为CPU在一个时钟周期内能够处理的二进制位数,如32位或64位。机器字长越长,计算精度越高。机器字长一般等于内部寄存器的大小。,它们共同协作完成数据处理和控制操作。是指计算机处理器每秒钟完成的时钟周期数(CPU内数字脉冲信号振荡的速度),则是每个时钟信号的时间间隔,二者成反比关系。CPU速度的关键指标包括和。

2024-11-17 20:12:59 752

原创 Java毕业设计----基于深度学习的目标检测实现

在TensorFlow中,通常使用的损失函数有交叉熵损失(cross_entropy_loss)或者均方误差损失(mean_squared_error),而常见的优化器有Adam优化器(AdamOptimizer)和随机梯度下降优化器(SGD)。在进行模型训练时,数据集的准备和增强(Data Augmentation)是非常重要的部分,尤其是在深度学习中,数据的多样性直接影响到模型的性能。通常,深度学习模型的训练是以批量(batch)的方式进行的,尤其是在大型数据集上进行训练时,逐个图像处理非常低效。

2024-11-17 16:27:36 667

原创 Java毕业设计----家教系统毕业设计

本项目实现了一个基本的线上辅导平台,涵盖了从用户管理到课程支付等核心功能,并使用Spring Boot、Thymeleaf和MySQL等技术实现了系统的构建。通过模块化设计和层次化架构,使得系统具备良好的扩展性和可维护性,能够应对日后功能的拓展和优化。这个平台不仅能为学生提供便捷的学习体验,还能帮助教师有效地管理课程和与学生互动。未来,可以通过持续优化系统性能和增加新功能来提升用户体验,使平台更加完备。

2024-11-15 09:19:16 1104 1

原创 Java毕业设计----基于Java的情感分析毕业设计

本文介绍了如何使用Java实现一个简单的情感分析系统。我们通过以下步骤完成了整个项目:数据预处理:我们通过清理文本、分词和去除停用词等方法处理了文本数据,为后续的机器学习模型训练做好准备。机器学习模型训练:我们使用了Weka库中的J48决策树算法来进行情感分类。J48是一种基于ID3算法的决策树,它适用于处理文本分类问题。预测与评估:我们对一个测试文本进行了情感预测,并根据模型输出的结果判断该文本的情感是“正面”还是“负面”。模型优化与扩展。

2024-11-13 17:55:51 1648 1

原创 机器学习系列----KNN分类

在机器学习领域,K近邻算法(K-Nearest Neighbors, KNN)是一种非常直观且常用的分类算法。它是一种基于实例的学习方法,也被称为懒学习(Lazy Learning),因为它在训练阶段不进行任何模型的构建,所有的计算都推迟到测试阶段进行。KNN分类的核心思想是:给定一个测试样本,找到在训练集中与其距离最近的K个样本,然后根据这K个样本的标签进行预测。本文将介绍KNN算法的基本原理、如何实现KNN分类,以及在实际使用中需要注意的几点。

2024-11-13 17:26:08 1655

原创 C语言学习笔记----基础篇

常量常量是指在程序运行过程中,其值不发生变化的量。常量又分为整型 实型(浮点型)字符串型为了指定存储区域,应该为每个变量赋予唯一的名称(标识符)变量名称只能包含字母(大写和小写字母),数字和下划线。变量的第一个字母应该是字母或下划线。对于变量名称(标识符)可以使用多长没有指定。但是,如果变量名超过31个字符,则在某些编译器中可能会遇到问题。1. 整数类型%d / %i:输出带符号的十进制整数。例子:int x = -42; printf("%d", x); 输出:-42%u:输出无符号的十进制整数。

2024-11-12 20:46:42 932 1

原创 TypeScript:现代 JavaScript 的超级集

TypeScript 是由微软开发的一个开源编程语言,它是 JavaScript 的一个严格超集。TypeScript 的核心特性是静态类型检查,使得开发者可以在编写代码时通过类型系统捕获潜在的错误,而不必等到运行时才发现问题。它编译成纯 JavaScript,并兼容所有 JavaScript 代码。因此,TypeScript 不仅可以改善代码质量和开发效率,还可以与现有的 JavaScript 项目无缝集成。

2024-11-11 19:35:15 1002

原创 嵌入式开发系列----入门保姆级必看博客

嵌入式开发是将计算机技术嵌入到硬件设备中的一种开发模式,广泛应用于消费电子、汽车、工业控制、医疗设备、智能家居等领域。它不仅涉及到传统的软件开发,还包括对硬件平台的深入理解。嵌入式系统通常具有资源受限(如内存、存储、处理能力、功耗等)的特点,因此开发者需要在高效利用硬件资源的基础上,确保系统的稳定性、实时性和可靠性。嵌入式开发涉及多个层次,从硬件设计到驱动开发,再到上层应用的实现,需要开发者掌握微处理器架构、数字电路、操作系统(RTOS或裸机编程)、设备驱动、通信协议、调试工具等多方面的知识。

2024-11-11 19:20:54 3747

原创 Java毕业设计-----基于AIGC的智能客服系统

项目背景与目标本项目的核心目标是开发一款基于人工智能的智能客服系统,旨在提高用户与服务提供者之间的沟通效率,同时提供更加个性化和高效的服务。通过集成自然语言处理(NLP)技术,本系统可以理解和生成自然语言回复,自动解答用户的常见问题,减少人工客服的负担。为了实现这一目标,系统整合了前端用户交互、后端数据处理与存储、以及外部AI接口调用等多个模块,构建了一个功能完善且具备扩展性的智能客服服务平台。

2024-11-10 21:13:15 2034

原创 史上最全JAVA八股文----100个基础问题汇总

史上最全java八股文,常见基础问题100道。

2024-11-10 20:50:18 1149 1

原创 机器学习系列----岭回归(Ridge Regression)简介及实现

岭回归(Ridge Regression),也被称为Tikhonov正则化,是一种线性回归的变体。它通过在普通最小二乘法(OLS)回归中加入L2正则化项来解决多重共线性问题,从而提高模型的泛化能力和鲁棒性。岭回归的核心思想是通过惩罚模型的参数,使得它们保持较小的值,从而减少过拟合的风险。岭回归适用于当特征之间高度相关时(即多重共线性问题),普通的线性回归模型可能会变得不稳定,并且模型的系数可能会变得非常大。岭回归通过加上一个正则化项,约束了模型参数的大小,从而使得模型更加稳健。

2024-11-09 16:57:04 6839

原创 机器学习系列----深入理解Transformer模型

Transformer模型的最大特点是基于“自注意力机制”(Self-Attention),它不依赖于传统的循环神经网络(RNN)或卷积神经网络(CNN),而是通过并行计算高效地处理序列数据。Transformer模型包含两个主要部分:编码器(Encoder)和解码器(Decoder)。每个部分由多个相同的层组成,每层包含不同的子组件。接下来,我们将逐一分析Transformer模型的关键组成部分。1. 自注意力机制(Self-Attention)

2024-11-09 16:40:21 1595

原创 前端刺客系列----Vue 3 入门介绍

Vue.js 是一款渐进式的 JavaScript 框架,用于构建用户界面。它的设计理念非常灵活,可以逐步引入到项目中,适应不同规模的需求。Vue 3 是 Vue.js 框架的最新版本,它在 Vue 2 的基础上进行了全面的优化,带来了以下几大亮点:性能提升:Vue 3 引入了更高效的虚拟 DOM 和组件渲染机制,使得整体性能得到了显著提升。组合式 API (Composition API):这是一种全新的编写组件的方式,使得逻辑复用和代码组织变得更加灵活和清晰。

2024-11-08 20:07:21 14397

原创 大数据治理----初步理解与实践

大数据治理是指对大规模数据进行系统化、规范化管理的过程,目的是保证数据的质量、安全性、合规性,并提升数据的可用性和价值。大数据治理不仅仅涉及数据本身,还包括数据的生命周期管理、访问控制、数据标准化、数据隐私保护等多方面内容。具体来说,大数据治理的核心要素包括:数据质量管理:确保数据的准确性、完整性、及时性和一致性。数据安全与隐私保护:保护数据免受未经授权的访问、篡改和泄露。数据合规性:遵循相关的法律法规和行业标准,确保数据处理过程合规。

2024-11-07 16:55:08 1203

原创 机器学习系列-----主成分分析(PCA)

主成分分析(PCA)是一种强大的统计方法,广泛应用于数据降维和特征提取。其主要思想是通过将高维数据投影到一个新的坐标系中,使得新坐标系中的各个主成分(即特征向量)能够最大程度地捕捉数据的方差,从而有效降低数据的维度并保留最重要的信息。PCA的基本过程包括对数据进行标准化处理、计算数据的协方差矩阵、对协方差矩阵进行特征值分解、然后选择前几个具有最大特征值的主成分,并将原始数据投影到这些主成分上,从而实现降维。

2024-11-07 16:39:22 3449

原创 计算机视觉系列----深入浅出了解计算机视觉

计算机视觉是人工智能(AI)的一个子领域,旨在让计算机系统通过分析和理解图像或视频来模仿人类视觉的感知能力。它包括图像识别、物体检测、图像分割等任务,目标是使计算机能够理解图像中的内容并作出合适的反应。

2024-11-06 17:05:52 1453

原创 机器学习系列----梯度下降算法

梯度下降算法是一个用于优化的算法,它通过迭代的方式来最小化一个损失函数。在机器学习中,模型的学习过程就是在训练数据上找到一组最佳的参数,这组参数能够使得预测的结果和真实标签之间的误差最小化。梯度下降就是通过反复调整模型参数(例如权重和偏置),沿着损失函数的梯度方向前进,从而找到最优解。1.1 为什么是“梯度”下降?“梯度”指的是一个多维函数在某一点的变化率,即函数的导数。在梯度下降算法中,梯度表示损失函数相对于模型参数的变化情况。

2024-11-05 17:23:06 1134 1

原创 机器学习系列----介绍前馈神经网络和卷积神经网络 (CNN)

前馈神经网络(FNN)是一种最基本的神经网络结构,信息在网络中按单向流动,没有任何循环或反馈连接。它由输入层、若干隐藏层和输出层组成。输入层:接收原始数据,传递给网络中的隐藏层。隐藏层:通过神经元和激活函数处理数据,捕捉数据中的特征。输出层:输出网络最终的预测结果。FNN 是最简单的神经网络结构,通常用于分类和回归问题。卷积神经网络(CNN)是一种专门用于处理具有网格结构的数据的深度学习算法,最常用于图像处理任务。

2024-11-05 17:00:36 2399

原创 数据结构实验报告----查找与排序

对于小规模、无序的数据,顺序查找和冒泡排序可能足够使用,但对于需要频繁查找或大规模数据处理的场景,折半查找、快速排序和希尔排序则是更优的选择。在本次实验中,我们深入探讨了查找和排序算法的实现与效率,通过具体的编程实践,巩固了对查找表和排序表常用存储方式的理解,并掌握了顺序查找、折半查找、冒泡排序、快速排序和希尔排序等多种算法的思想及其实现。1.基本思想:改进自插入排序,通过比较相距一定间隔的元素来工作,各趟比较所用的距离随着算法的进行而减小,直到只比较相邻元素的最后一趟排序为止。

2024-11-04 20:17:03 1213

原创 数据结构实验----模式匹配算法

在字符串匹配中,朴素模式匹配算法简单易懂,但在处理大规模数据时性能较差;而KMP算法通过巧妙的预处理技术显著提高了匹配效率,适合更复杂和性能敏感的应用场景。

2024-11-04 20:11:57 1209

原创 C++课程设计----学生信息管理系统的详细实现

C++实用实验报告

2024-11-03 20:19:01 1954 1

原创 脑科学与人工智能入门

脑科学与人工智能(AI)是两个交叉学科,彼此相互影响,推动各自的发展。脑科学研究人类和动物的大脑结构、功能和认知过程,旨在理解智能如何产生、感知、学习和记忆。这些研究为开发更先进的人工智能系统提供了灵感,尤其是在模仿人类认知和行为方面。

2024-11-03 20:08:01 371

原创 数据结构实验报告----线性表的基本操作

报m的人出列,将他的密码作为新的m值,从他在顺时针方向上的下一个人开始重新从1报数,如此下去,直到所有人全部出列为止。显然当前剩余人的编号序列是一个线性表,请设计数据结构用于存储该编号序列,并编写程序实现该游戏,要求最后根据用户输入的n和m,输出出列顺序。1.sequence:用于存储参与约瑟夫问题的人的编号。2.使用 for 循环,让指针 index 沿着 sequence 指向的人的位置移动 m-1 步(即报数 m 次)。2.result:用于存储出列的人的编号。测试样例(1):n=11,m=6。

2024-11-03 20:02:55 215

原创 Linux实验报告----常用文件系统

练习:使用命令ls查看/bin/ls,/dev/sds,/dev/sda,/dev/tty,/dev/stdin。使用命令xfs_admin或xfs_db查看xfs文件系统超级块信息。使用命令df以便于阅读的方式查看文件系统磁盘空间的使用情况。使用命令stat查看文件 /bin/ls 的inode信息。命令df可显示所有文件系统对i节点和磁盘块的使用情况。命令ls的长格式可以读取文件的部分属性信息。文件,完成表6-2中的内容。剩余可用inode个数。每个块中包含节点个数。已分配inode个数。

2024-11-03 19:59:22 517

原创 几种常用高级语言简介

C++、Python、C和Java是四种不同的编程语言,它们在语法、用途和特点上有所不同。

2023-09-26 09:39:48 809 1

原创 基于Python的网络聊天软件的设计与实现

本项目指在设计一个基于python GUI编程,matplotlib画图,MySQL数据库操作以及网络通信图形界面的程序。

2023-09-19 08:29:56 1028

《机器学习(西瓜书)实用联系题》

内容概要 《机器学习(西瓜书)实用联系题》是与经典教材《机器学习》(周志华著,俗称“西瓜书”)配套的练习资料。它围绕西瓜书中各章节的核心知识点,精心设计了一系列实用的练习题。这些题目涵盖了机器学习的基础理论、算法原理、模型构建与评估等多个方面,旨在帮助读者巩固理论知识,提升实践能力。通过解答这些练习题,读者可以深入理解机器学习算法的细节,掌握如何将理论应用于实际问题的解决过程中,从而更好地应对机器学习领域的各种挑战。 实用人群 机器学习初学者:对于刚刚接触机器学习领域的学生、自学者等,这些练习题可以帮助他们系统地学习和掌握基础知识,逐步建立起对机器学习算法和概念的理解,为后续深入学习打下坚实基础。 高校教师与学生:教师可以将其作为教学辅助材料,用于布置作业、组织课堂讨论等,帮助学生更好地消化课堂知识;学生则可以通过练习题检验自己的学习效果,加深对课程内容的理解和记忆,提高学习效率。

2025-01-18

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除