SUBLLM(Sub-sampling Bypass Module)原理解析及应用场景

SUBLLM(Sub-sampling Bypass Module) 是由小米AI实验室提出的高效推理技术,核心思想是通过动态子采样大幅减少计算量,结合语义恢复模块保障输出质量,实现推理速度与资源消耗的突破性优化。以下从原理、架构到应用场景深入解析:


在这里插入图片描述

⚙️ 一、技术原理:计算流的三阶段重构

1. 动态子采样(关键token提取)
  • 热力图定位
    使用轻量级注意力热力图预测器(3层CNN),快速识别输入文本中的关键token(如实体、动词、否定词)。
  • 非均匀采样
    对关键区域(如问题核心)保留90% token,非关键区域(如描述性段落)仅保留5-10%,实现 10倍压缩率
  • 示例

    输入:“量子纠缠如何实现超距通信?爱因斯坦称其为‘幽灵般的超距作用’。”
    采样后:“量子纠缠 实现 超距通信?爱因斯坦 称 ‘幽灵般’。”(压缩比 12:60)
    在这里插入图片描述

2. 旁路计算(子模型推理)
  • 子模型架构
    原始LLM的浅层副本(如仅保留前6层),处理压缩后的稀疏输入。
  • 计算节省
    参数量降至1/8,FLOPs减少为1/15(Llama3-8B实测从16TFLOPs→1.1TFLOPs)。
3. 语义恢复(上采样重建)
  • 残差增强模块
    将子模型输出与原始输入的关键位置特征融合,通过轻量MLP重建完整语义。
  • 数学表达
    y full = MLP ( y sub ⊕ x key ) \mathbf{y}_{\text{full}} = \text{MLP}(\mathbf{y}_{\text{sub}} \oplus \mathbf{x}_{\text{key}}) yfull=MLP(ysubxkey)
    其中 x key \mathbf{x}_{\text{key}} xkey 为关键token嵌入, ⊕ \oplus 表示拼接操作。

在这里插入图片描述

🚀 二、架构创新:三模块协同

graph LR
    A[原始输入] --> B[动态子采样模块]
    B --> C[旁路子模型]
    C --> D[语义恢复模块]
    D --> E[最终输出]
    A -->|关键位置特征| D  <!-- 原始输入直连恢复模块 -->
  1. 动态子采样模块

    • 输入:原始Token序列 x ∈ R L \mathbf{x} \in \mathbb{R}^{L} xRL
    • 输出:压缩序列 x s
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值