题目:
一个整数区间 [a, b] ( a < b ) 代表着从 a 到 b 的所有连续整数,包括 a 和 b。
给你一组整数区间intervals,请找到一个最小的集合 S,使得 S 里的元素与区间intervals中的每一个整数区间都至少有2个元素相交。
输出这个最小集合S的大小
示例 1:
输入: intervals = [[1, 3], [1, 4], [2, 5], [3, 5]]
输出: 3
解释:
考虑集合 S = {2, 3, 4}. S与intervals中的四个区间都有至少2个相交的元素。
且这是S最小的情况,故我们输出3。
示例 2:
输入: intervals = [[1, 2], [2, 3], [2, 4], [4, 5]]
输出: 5
解释:
最小的集合S = {1, 2, 3, 4, 5}.
注意:
intervals 的长度范围为[1, 3000]。
intervals[i] 长度为 2,分别代表左、右边界。
intervals[i][j] 的值是 [0, 10^8]范围内的整数。
来源:力扣(LeetCode)
链接:https://leetcode.cn/problems/set-intersection-size-at-least-two
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
思路:
我们对intervals进行排序,intervals[0]升序,inervals[1]降序,然后从后向前进行遍历。
只取左边界,以及+1,为第二个数。
排序的思想
不同情况的考虑(3种)
1.若yi >= next ,则是一个大区间,一定满足交集为2的情况
2.若yi < cur,那一定没有交集,我们还是贪心的取cur = xi,next = xi + 1
3.若cur <= yi < next,有一个交集,我们贪心的取next = cur,cur = xi,保证每次都是取左边界和左边界+1
代码:
class Solution {
public:
int intersectionSizeTwo(vector<vector<int>>& intervals) {
// 先进行排序
sort(intervals.begin(), intervals.end(), [](auto& a, auto& b){
if (a[0] == b[0]) {
return a[1] > b[1];
} else {
return a[0] < b[0];
}
});
int n = intervals.size();
int cur = intervals[n-1][0];
int next = intervals[n-1][0] + 1;
int ans = 2;
for (int i = n - 2; i >= 0; i--) {
if (intervals[i][1] >= next) {
continue;
} else if (intervals[i][1] < cur) {
cur = intervals[i][0];
next = intervals[i][0] + 1;
ans += 2;
} else {
next = cur;
cur = intervals[i][0];
ans++;
}
}
return ans;
}
};