入门力扣自学笔记243 C++ (题目编号:剑指Offer 47)(动态规划)

剑指 Offer 47. 礼物的最大价值

题目:

在一个 m*n 的棋盘的每一格都放有一个礼物,每个礼物都有一定的价值(价值大于 0)。你可以从棋盘的左上角开始拿格子里的礼物,并每次向右或者向下移动一格、直到到达棋盘的右下角。给定一个棋盘及其上面的礼物的价值,请计算你最多能拿到多少价值的礼物?


示例 1:

输入: 
[
  [1,3,1],
  [1,5,1],
  [4,2,1]
]
输出: 12
解释: 路径 1→3→5→2→1 可以拿到最多价值的礼物


提示:

0 < grid.length <= 200
0 < grid[0].length <= 200


来源:力扣(LeetCode)
链接:https://leetcode.cn/problems/li-wu-de-zui-da-jie-zhi-lcof
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。


思路:

这道题我们采用动态规划来解决此问题。

首先,我们要先遍历一行一列,从而进行初始化操作。

其次,我们进行二次循环,找到每一个点的最大值。

最后,返回右下角的数据,最大值即可。


代码:

class Solution {
public:
    int maxValue(vector<vector<int>>& grid) {
        int m = grid.size();
        int n = grid[0].size();
        for(int j = 1;j < n;j++)
            grid[0][j] += grid[0][j-1];
        for(int i = 1;i < m;i++)
            grid[i][0] += grid[i-1][0];
        for(int i = 1;i < m;i++)
            for(int j = 1;j < n;j++)
                grid[i][j] += max(grid[i][j-1],grid[i-1][j]);
        return grid[m-1][n-1];
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值