题目:
在一个 m*n 的棋盘的每一格都放有一个礼物,每个礼物都有一定的价值(价值大于 0)。你可以从棋盘的左上角开始拿格子里的礼物,并每次向右或者向下移动一格、直到到达棋盘的右下角。给定一个棋盘及其上面的礼物的价值,请计算你最多能拿到多少价值的礼物?
示例 1:
输入:
[
[1,3,1],
[1,5,1],
[4,2,1]
]
输出: 12
解释: 路径 1→3→5→2→1 可以拿到最多价值的礼物
提示:
0 < grid.length <= 200
0 < grid[0].length <= 200
来源:力扣(LeetCode)
链接:https://leetcode.cn/problems/li-wu-de-zui-da-jie-zhi-lcof
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
思路:
这道题我们采用动态规划来解决此问题。
首先,我们要先遍历一行一列,从而进行初始化操作。
其次,我们进行二次循环,找到每一个点的最大值。
最后,返回右下角的数据,最大值即可。
代码:
class Solution {
public:
int maxValue(vector<vector<int>>& grid) {
int m = grid.size();
int n = grid[0].size();
for(int j = 1;j < n;j++)
grid[0][j] += grid[0][j-1];
for(int i = 1;i < m;i++)
grid[i][0] += grid[i-1][0];
for(int i = 1;i < m;i++)
for(int j = 1;j < n;j++)
grid[i][j] += max(grid[i][j-1],grid[i-1][j]);
return grid[m-1][n-1];
}
};