题目:
给定正整数 n,返回在 [1, n] 范围内具有 至少 1 位 重复数字的正整数的个数。
示例 1:
输入:n = 20
输出:1
解释:具有至少 1 位重复数字的正数(<= 20)只有 11 。
示例 2:
输入:n = 100
输出:10
解释:具有至少 1 位重复数字的正数(<= 100)有 11,22,33,44,55,66,77,88,99 和 100 。
示例 3:
输入:n = 1000
输出:262
提示:
1 <= n <= 109
来源:力扣(LeetCode)
链接:https://leetcode.cn/problems/numbers-with-repeated-digits
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
思路:
题目要求至少含1位重复数字的方案数,那显然等价于总数N-不含任何重复数字的方案数,然后就可以用数位DP去求不含任何重复数字的方案数
设dp[pos][st]表示正在考虑第pos位,此时数字的使用状态已经是st,且不含重复数字的方案数。
那么显然dp[pos][st] += dp[pos-1][st|(1<<i)], 当st的第i位为0即数字i没使用过即可。
当然最后可能存在全部都是0这种完全由前导0构成的非法方案,所以当搜到最底层返回时要用st来判断一下当前数字是否是存在的,不存在就得返回0。
注意下位运算的优先级
代码:
class Solution
{
public:
static const int N = 10;
int dp[N][1 << N];
int a[N], n;
int dfs(int pos, int st, int lead, int lim)
{
if(pos <= -1)
return !st ? 0 : 1;
if(!lead && !lim && ~dp[pos][st])
return dp[pos][st];
int up = lim ? a[pos] : 9;
int ret = 0;
for (int i = 0; i <= up; ++i)
{
if(i == 0)
{
if(!lead)
{
if(!(st >> i & 1))
ret += dfs(pos - 1, st | (1 << i), lead && i == 0, lim && i == a[pos]);
}
else
{
ret += dfs(pos - 1, st, lead && i == 0, lim && i == a[pos]);
}
}
else
{
if(!(st >> i & 1))
{
ret += dfs(pos - 1, st | (1 << i), lead && i == 0, lim && i == a[pos]);
}
}
}
if(!lead && !lim)
dp[pos][st] = ret;
return ret;
}
int numDupDigitsAtMostN(int N)
{
n = 0;
int num = N;
do {
a[n++] = num % 10;
num /= 10;
}
while (num);
memset(dp, -1, sizeof(dp));
int diff = dfs(n - 1, 0, 1, 1);
return N - diff;
}
};
作者:codefresher
链接:https://leetcode.cn/problems/numbers-with-repeated-digits/solution/shu-wei-dpru-men-ti-by-codefresher-9w0o/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。