- 博客(27)
- 收藏
- 关注
原创 形态学-膨胀与腐蚀
形态学:膨胀与腐蚀 本篇文章中,我们一起探究了图像处理中,最基本的形态学运算——膨胀与腐蚀。浅墨在文章开头友情提醒,用人物照片做腐蚀和膨胀的素材图片得到的效果会比较惊悚,毁三观的,不建议尝试。。。。。。。。。。 OK,开始吧,依然是先放一张截图: 一、理论与概念讲解——从现象到本质 1.1 形态学概述 形态学(
2017-12-01 09:26:17 991
原创 显著降低模型训练成本的主动增量学习
CVPR 2017精彩论文解读:显著降低模型训练成本的主动增量学习 | 分享总结 导语:active learning + sequential fine-tune,让模型表现停止增长的点在更少数据时到来 在 8 月 1 日的直播分享中,刘凯博士为大家解读了「Fine-tuning Convolutional Neural Networks for Biomedical Image An
2017-12-01 09:23:47 4417
原创 网络结构
Inception-v1 Inception-v3 Inception-v4 Inception-ResNet-v1 Inception-ResNet-v2 VGGNet
2017-12-01 09:22:41 378
原创 图像金字塔
从opencv函数的金字塔函数和尺度缩放函数说起 Opencv里面金字塔和resize函数都是有关图像分辨率的问题。我们经常会将某种尺寸的图像转换为其他尺寸的图像,如果放大或者缩小图片的尺寸,笼统来说的话,可以使用OpenCV为我们提供的如下两种方式:1> resize函数。这是最直接的方式,2> pyrUp( )、pyrDown( )函数。即图像金字塔相关的两个函数,对图像进行向上采样,向下
2017-12-01 09:20:45 462
原创 docker
使用docker部署开发环境的两个目的:1. 标准化2. 快速部署 新建容器的两个方法:1. 从hub.docker拉取镜像后进行相关配置,完成后通过该镜像生成容器2. 根据配置打包好的本地镜像生成容器具体步骤如下:1. 从hub.docker拉取镜像后进行相关配置,完成后通过该镜像生成容器(1). install nvidia-docker# 获取r
2017-12-01 09:19:28 395
原创 目标检测-RCNN系列
• RCNN RCNN(Regions with CNN features)是将CNN方法应用到目标检测问题上的一个里程碑,由年轻有为的RBG大神提出,借助CNN良好的特征提取和分类性能,通过RegionProposal方法实现目标检测问题的转化。 算法可以分为四步: 1)候选区域选择 Region Proposa
2017-12-01 09:17:33 516
原创 rfcn
R-FCN: Object Detection via Region-based Fully Convolutional Networks论文下载地址 源码地址 本篇论文是微软亚研何凯明代季峰的团队做的工作,虽然何凯明16年去了facebook,但是相关工作还在进行,代码还是公布在github上。感兴趣的可以从链接下载源码进行分析测试。 Introduce论文主要
2017-12-01 09:15:44 6989
原创 Dropout
Dropout浅层理解与实现 一、相关工作 本来今天是要搞《Maxout Networks》和《Network In Network》的,结果发现maxout和dropout有点类似,所以就对dropout做一下相关的总结,了解一下其代码层面的实现。 Dropout是2012年深度学习视觉领域的开山之作paper:《ImageNet Classification
2017-11-21 16:27:58 1228
原创 ResNet
Deep Residual Network 与 梯度消失 1. 什么是DRN,为什么需要DRNDRN的全称是Deep Residual Network,深度残差网络,是对普通的深度学习网络的一种改进。 我们为什么需要深度残差网络呢?因为普通的深度学习网络存在着这样的问题 在层数比较少的时候,我们增加网络的深度,可以获得更好的表达效果。但是当层数已经足够多,比如说超过了三
2017-11-20 20:41:20 1400 1
原创 Inception-ResNet2
网络模型中Inception的作用与结构全解析 一 论文下载 本文涉及到的网络模型的相关论文以及下载地址: [v1] Going Deeper with Convolutions, 6.67% test error http://arxiv.org/abs/1409.4842 [v2] Batch Normalization: Accelerating Deep Net
2017-11-20 20:39:33 894
原创 FPN
Feature Pyramid Networks for Object Detection 前言这篇论文主要使用特征金字塔网络来融合多层特征,改进了CNN特征提取。论文在Fast/Faster R-CNN上进行了实验,在COCO数据集上刷到了第一的位置,意味着其在小目标检测上取得了很大的进步。论文整体思想比较简单,但是实验部分非常详细和充分。此博文对主要内容进行了翻译和理解工作,不足之处,
2017-11-20 20:37:46 1304
原创 faster_rcnn
Faster RCNN就像之前在RCNN章节提到的创新思路所说,Faster RCNN 将selective search这样的算法整合到深度网络中,这样不光解决了selective search这样的算法是cpu实现,速度慢的问题,而且与深度网络相结合,共享前面的卷积计算,这样做计算效率更高。而其他部分则与Fast RCNN差异不大。故这里主要讲些Region Proposal Networ
2017-11-20 20:36:04 1058
原创 fast_rcnn
Fast R-CNN首先声明:本文很多内容来自两个博客: RCNN, Fast-RCNN, Faster-RCNN的一些事目标检测--从RCNN到Faster RCNN 串烧 。先回归一下: R-CNN ,SPP-netR-CNN和SPP-net在训练时pipeline是隔离的:提取proposal,CNN提取特征,SVM分类,bbox regression。 Fast R-C
2017-11-20 20:33:30 477
原创 dilated_conv
空洞卷积(dilated convolution)为什么要引入step?个人理解是因为图像像素是连续变化的,如果只取四领域进行计算,那么计算出来的对比度很小。也就是说提取出来的特征不那么明显,也就是说没有充分利用图像信息。 简单讨论下dilated conv,中文可以叫做空洞卷积或者扩张卷积。首先介绍一下dilated conv诞生背景[4],再解释dilated conv操作本身,以
2017-11-20 20:29:51 616
原创 object detection
什么是object detection object detection我的理解,就是在给定的图片中精确找到物体所在位置,并标注出物体的类别。object detection要解决的问题就是在哪里,是什么,具体在哪里这整个流程的问题。然而,这个问题可不是那么容易解决的,物体的尺寸变化范围很大,摆放物体的角度,姿态不定,而且可以出现在图片的任何地方,更何况物体还可以是多个类别。故用一般的方法
2017-11-20 20:27:46 381
原创 GAN2
GAN入门教程生成式对抗网络是20年来机器学习领域最酷的想法。 ——Yann LeCun自从两年前蒙特利尔大学的Ian Goodfellow等人提出生成式对抗网络(Generative Adversarial Networks,GAN)的概念以来,GAN呈现出井喷式发展。这篇发布在O'Reilly上的文章中,作者向初学者进行了GAN基础知识答疑,并手把手教给大家如何用GAN创建可以生成
2017-11-20 20:26:14 1190
原创 GAN
到底什么是生成式对抗网络GAN? 它要解决的问题是如何从训练样本中学习出新样本,训练样本是图片就生成新图片,训练样本是文章就输出新文章等等。最终的目的是generator的输出给discriminator时很难判断是真实or伪造的男:哎,你看我给你拍的好不好? 女:这是什么鬼,你不能学学XXX的构图吗? 男:哦 ……男:这次你看我拍的行不行?
2017-11-20 20:24:36 1504 1
原创 first_report_gu
CNN CNN本质上是一个多层感知机,其成功的原因关键在于它所采用的局部连接和共享权值的方式,一方面减少了的权值的数量使得网络易于优化,另一方面降低了过拟合的风险。该优点是使图像可以直接作为网络的输入,网络能自行抽取图像特征,包括颜色、纹理、形状及图像的拓扑结构,避免了传统识别算法中复杂的特征提取和数据重建过程,并且在位移、缩放及其它形式扭曲不变性(这是因为局部感知区域能够获得一些基础的特征,
2017-11-20 20:21:47 714
原创 CRF+FCN
图像语义分割之FCN和CRF 介绍 图像语义分割,简单而言就是给定一张图片,对图片上的每一个像素点分类 从图像上来看,就是我们需要将实际的场景图分割成下面的分割图: 不同颜色代表不同类别。 经过我阅读"大量"论文(羞涩)和查看Pascal VOC 2012 Learderboard,我发现图像语义分割从深度学习引入这个任务(FCN)到现在而言,一个通用的框
2017-11-19 14:09:50 6335 1
原创 convolution卷积
卷积 自然图像有其固有特性,也就是说,图像的一部分的统计特性与其他部分是一样的。这也意味着我们在这一部分学习的特征也能用在另一部分上,所以对于这个图像上的所有位置,我们都能使用同样的学习特征。 更恰当的解释是,当从一个大尺寸图像中随机选取一小块,比如说 8x8 作为样本,并且从这个小块样本中学习到了一些特征,这时我们可以把从这个 8x8 样本中学习到的特征作为探测器,应用到这个图像的任意地
2017-11-19 14:07:06 692
原创 cnn
本文是对卷积神经网络的基础进行介绍,主要内容包括卷积神经网络概念、卷积神经网络结构、卷积神经网络求解、卷积神经网络LeNet-5结构分析、卷积神经网络注意事项。 一、卷积神经网络概念 上世纪60年代,Hubel等人通过对猫视觉皮层细胞的研究,提出了感受野这个概念,到80年代,Fukushima在感受野概念的基础之上提出了神经认知机的概念,可以看作是卷积神经网络的第一个实现网络,神
2017-11-19 14:05:01 6303
原创 cnn本质
cnn的核心在于卷积核,其实关于卷积核还有另一个名字叫做滤波器,从信号处理的角度而言,滤波器是对信号做频率筛选,这里主要是空间-频率的转换,cnn的训练就是找到最好的滤波器使得滤波后的信号更容易分类,还可以从模版匹配的角度看卷积,每个卷积核都可以看成一个特征模版,训练就是为了找到最适合分类的特征模版,一点浅见。 -----------------------------------分割
2017-11-19 14:03:17 5089 4
原创 Dilated Residual Networks
CVPR 2017论文笔记— Dilated Residual Networks 1.Background这次我来介绍一篇深度网络文章《Dilated Residual Networks》,发表在CVPR 2017会议上。作者是普林斯顿大学的Fisher Yu博士等人。网络简称为DRN。文章原文可在作者主页阅览:Fisher Yu主页 这篇文章实则是作者将何恺明(Kaiming H
2017-11-19 13:55:05 975
原创 FCN
大多数人接触"语义"都是在和文字相关的领域,或语音识别,期望机器能够识别你发出去的消息或简短的语音,然后给予你适当的反馈和回复。嗯,看到这里你应该已经猜到了,图像领域也是存在"语义"的。 今天是AI大热年,很多人都关注与机器人的语音交互,可是有没有想过,将来的机器人如果不能通过图像来识别主人,家里的物品、宠物,那该多没意思。说近一些,假如扫地机器人能够机智地绕开你丢在地上的臭袜子而扫走旁边
2017-11-19 13:52:27 12737 19
原创 SPP
SPP详解 上两图:核心思想 上图:spp用于目标检测 算法设计原因:CNN卷积层不需要固定尺寸输入 用于目标检测的优点:1.精度高(多尺度特征)2.速度快(20-100倍) SPP网络,我不得不要先说,这个方法的思想在Fast RCNN, Faster RCNN上都起了举足轻重的作用。SPP网络主
2017-11-19 13:30:16 915
原创 RCNN
附一张发表RCNN并开启目标检测深度学习浪潮的Ross B. Girshick(rbg)男神: 无论如何,目标检测属于应用范畴,有些机器学习基础上手还是很快的,所以让我们马上来补习一下!首先什么是目标检测?目标检测对人类是如此简单: 把存在的目标从图片中找出来,就是那么简单!在计算机中,传统目标检测方法大致分为如下三步: 如上图所示,首先在给定的图像上选择一些候选
2017-11-16 15:40:59 491
原创 Batch Normalization
到底什么是Batch Normalization? Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate ShiftBatch Normalization: 通过减少分布发生的变化加速深度网络 网络训练过程中参数不断改变导致后续每一层输入的分布
2017-11-16 15:36:44 622
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人