题面
70分显然可以状压每个数分解质因数的情况,DP即可。
正解:考虑一个<=n的数最多有一个>=sqrt(n)的质因子,我们按这个大质因子相同的数分在一组,显然一组中最多选一个,<=sqrt(n)的质因子只有8个,状压即可。f[i][j][s]表示前i组选了j个数,当前乘积分解质因数为s的答案,转移即可。
代码:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define up(a,b) a=(a+b)%mod
#define ll long long
using namespace std;
const int mod=1000000007;
int n,K,pri[100],flag[510],num,tot;
ll f[2][185][260];
struct node
{
int id,s;
}a[510],b[510];
bool cmp(node a,node b)
{
return a.id<b.id;
}
void getpri(int n)
{
memset(flag,1,sizeof(flag));
flag[1]=0;
for(int i=1;i<=n;i++)
{
if(flag[i]) pri[++num]=i;
for(int j=1;j<=num&&i*pri[j]<=n;j++)
{
flag[i*pri[j]]=0;
if(i%pri[j]==0) break;
}
}
}
int main()
{
getpri(500);
tot=100;
for(int i=2;i<=500;i++)
for(int j=1;j<=num;j++)
if(i%pri[j]==0)
{
if(j<=8) a[i].s|=(1<<(j-1));
else a[i].id=j-8;
}
a[1].id=1e9;
for(int i=2;i<=500;i++)
for(int j=1;j<=8;j++)
if(i%(pri[j]*pri[j])==0) a[i].id=1e9;
for(int i=2;i<=500;i++)
if(a[i].id==0) a[i].id=(++tot);
int ca;
scanf("%d",&ca);
while(ca--)
{
scanf("%d%d",&n,&K);
for(int i=1;i<=n;i++) b[i]=a[i];
sort(b+1,b+n+1,cmp);
memset(f,0,sizeof(f));
f[0][0][0]=f[0][1][0]=1;
int p=1;
for(int i=1;i<=180;i++)
{
int v=(i&1);
for(int j=0;j<=min(i+1,K);j++)
for(int s=0;s<=255;s++)
f[v][j][s]=f[v^1][j][s];
for(;b[p].id==i;p++)
for(int j=1;j<=min(i+1,K);j++)
for(int s=0;s<=255;s++)
if((b[p].s^s)==(b[p].s+s)) up(f[v][j][b[p].s+s],f[v^1][j-1][s]);
}
ll ans=0;
for(int j=0;j<=min(181,K);j++)
for(int s=0;s<=255;s++)
up(ans,f[0][j][s]);
printf("%lld\n",ans-1);
}
return 0;
}