题面
首先可以发现以0为根时,层与层之间时独立的,于是就有了一种O(n^2)的做法:对每一层DP一次,设f[d][i][0/1]表示当前考虑第d层的贡献,i的子树中贡献0/1的方案数。那么最后我们得到很多f[][0][0/1],然后问题就变成从每个f[d][0][0/1]只能选其一,选中的数相乘并乘上选的f[][0][1]的个数再求总和,随便计数一下就好。
接着我们考虑怎么把这么所有层放在一起DP,我们重新定义一下状态f[d][i][0/1/2]表示考虑i下面的第d层,使得i上有0/1/多个的方案数。就是一个点i有一串dp状态。
然后就有一种类似启发式合并的做法,父亲先继承下状态最多的那个儿子,然后合并其他儿子的答案。
其实这样合并是O(n)的。因为同一层的两个点u,v只会在其LCA合并一次,然后同层所有点两两的LCA最多有该层点数-1个(很容易证)。所以总合并次数是O(n)级别的。
注意写的时候不能对状态最多的那个儿子做任何遍历之类的操作,否则复杂度GG。
代码:
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<vector></