题面
考场上sb用set,式子还没化成
O(T)
的,总复杂度
O(nTlogn+nT2)
,70分滚粗。。。
首先对于一段长度为
k
区间,假设按
∑i=1kwi2i
所以显然要按从大到小的顺序来选,然后发现本题不要求取模,所以当 i 很大时,
这样的复杂度还是不能接受,考虑对于每一个 wi ,计算其在所有区间中的贡献。我们按 wi 从小到大的顺序来考虑,用链表找到其左边 T 个和右边
wi∑x=1T∑y=1T(lx−1−lx)∗(ry−ry−1)∗12x+y−1
=2wi(∑x=1T(lx−1−lx)∗12x)(∑y=1T(ry−ry−1)∗12y)
处理完从链表中删掉这个元素即可。复杂度 O(nlogn+nT) 。
代码:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<set>
#define pii pair<int,int>
#define fs first
#define sc second
using namespace std;
const int maxn=1000010;
const int R=32;
int n,l[R+5],r[R+5],pre[maxn],suc[maxn];
pii w[maxn];
set<int> a;
double mi[R+5],ans=0;
int read()
{
int x=0;char ch;
for(ch=getchar();ch<'0'&&ch>'9';ch=getchar());
for(;ch>='0'&&ch<='9';ch=getchar())x=x*10+ch-'0';
return x;
}
int main()
{
n=read();
for(int i=1;i<=n;i++) w[i].fs=read(),w[i].sc=i;
mi[0]=1;
for(int i=1;i<=R;i++) mi[i]=mi[i-1]/2.0;
sort(w+1,w+n+1);
for(int i=1;i<=n+1;i++) pre[i]=i-1;
for(int i=0;i<=n;i++) suc[i]=i+1;
for(int i=1;i<=n;i++)
{
int lt,rt,ltop=0,rtop=0;
l[0]=r[0]=lt=rt=w[i].sc;
for(int j=1;j<=R;j++)
{
if(lt)l[++ltop]=(lt=pre[lt]);
if(rt!=n+1)r[++rtop]=(rt=suc[rt]);
}
double lans=0,rans=0;
for(int j=1;j<=ltop;j++) lans+=mi[j]*(l[j-1]-l[j]);
for(int j=1;j<=rtop;j++) rans+=mi[j]*(r[j]-r[j-1]);
ans+=lans*rans*2*w[i].fs;
pre[suc[w[i].sc]]=pre[w[i].sc];
suc[pre[w[i].sc]]=suc[w[i].sc];
}
printf("%.10lf",ans/n/n);
return 0;
}