[2018雅礼集训1-12]小C饮水记

题面
考场上sb用set,式子还没化成 O(T) 的,总复杂度 O(nTlogn+nT2) ,70分滚粗。。。
首先对于一段长度为 k 区间,假设按w1,...,wk的顺序来选,贡献为

i=1kwi2i

所以显然要按从大到小的顺序来选,然后发现本题不要求取模,所以当 i 很大时,wi的贡献就可以忽略不计了。所以我们只关心区间中前 T 大的数,T=30左右。
这样的复杂度还是不能接受,考虑对于每一个 wi ,计算其在所有区间中的贡献。我们按 wi 从小到大的顺序来考虑,用链表找到其左边 T 个和右边T个比它大的,设为 l1..T r1..T ,为了方便设 l0=r0=i ,于是其贡献为
wix=1Ty=1T(lx1lx)(ryry1)12x+y1
=2wi(x=1T(lx1lx)12x)(y=1T(ryry1)12y)

处理完从链表中删掉这个元素即可。复杂度 O(nlogn+nT)
代码:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<set>
#define pii pair<int,int>
#define fs first
#define sc second
using namespace std;
const int maxn=1000010;
const int R=32;
int n,l[R+5],r[R+5],pre[maxn],suc[maxn];
pii w[maxn];
set<int> a;
double mi[R+5],ans=0;
int read()
{
    int x=0;char ch;
    for(ch=getchar();ch<'0'&&ch>'9';ch=getchar());
    for(;ch>='0'&&ch<='9';ch=getchar())x=x*10+ch-'0';
    return x;
}
int main()
{
    n=read();
    for(int i=1;i<=n;i++) w[i].fs=read(),w[i].sc=i;
    mi[0]=1;
    for(int i=1;i<=R;i++) mi[i]=mi[i-1]/2.0;
    sort(w+1,w+n+1);
    for(int i=1;i<=n+1;i++) pre[i]=i-1;
    for(int i=0;i<=n;i++) suc[i]=i+1;
    for(int i=1;i<=n;i++)
    {
        int lt,rt,ltop=0,rtop=0;
        l[0]=r[0]=lt=rt=w[i].sc;
        for(int j=1;j<=R;j++)
        {
            if(lt)l[++ltop]=(lt=pre[lt]);
            if(rt!=n+1)r[++rtop]=(rt=suc[rt]);  
        }
        double lans=0,rans=0;
        for(int j=1;j<=ltop;j++) lans+=mi[j]*(l[j-1]-l[j]);
        for(int j=1;j<=rtop;j++) rans+=mi[j]*(r[j]-r[j-1]);
        ans+=lans*rans*2*w[i].fs;
        pre[suc[w[i].sc]]=pre[w[i].sc];
        suc[pre[w[i].sc]]=suc[w[i].sc];
    }
    printf("%.10lf",ans/n/n);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值