[联合集训6-19] K小数查询 分块+二分答案

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/DOFYPXY/article/details/80766589

有一种常数比较小的O(nnlog2n)的做法。
分块,每个块维护一个其中元素排好序之后的数组。修改的时候零散块直接重构,整块打标记。询问的时候先二分答案mid,那么就转化成求小于等于mid的数的个数,对于零散的块重构后暴力数,整块的如果标记mid答案就是块大小,否则直接在数组上二分即可。

如果把排序的数组换成权值线段树,二分答案换成若干棵权值线段树上一起二分,复杂度可以降到O(nnlogn),但常数很大。。。

代码:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define N 90010
#define ID(x) ((x-1)/B+1)
#define min(x,y) (x<y?x:y)
using namespace std;
const int B=520;
const int inf=0x3f3f3f3f;
int n,m,a[N],sta[20],t[(B+10)<<1],top;
int read()
{
    int x=0,f=1;char ch=getchar();
    for(;ch<'0'||ch>'9';ch=getchar()) if(ch=='-')f=-1;
    for(;ch>='0'&&ch<='9';ch=getchar()) x=x*10+ch-'0';
    return x*f;
}
void write(int x)
{
    int pot=0;
    if(x==0) {putchar('0');return ;}
    for(;x;x/=10) sta[++pot]=x%10;
    while(pot) putchar('0'+sta[pot--]);
}

struct block
{
    int L,R,len,mi,s[B+10];
    bool ex;
    block(){mi=inf;ex=0;}
    void rebuild()
    {
        if(!ex) return ;
        for(int i=L;i<=R;i++)
            s[i-L+1]=a[i]=min(a[i],mi);
        sort(s+1,s+len+1);  
        ex=0;
    }   
    void build(int l,int r)
    {
        ex=1;
        L=l;R=r;
        len=r-l+1;
        rebuild();          
    }
    void mdf(int lab)
    {
        if(lab<mi) ex=1,mi=lab;
    }
    void bmdf(int l,int r,int lab)
    {
        ex=1;
        for(int i=l;i<=r;i++)
            a[i]=min(a[i],lab);
        rebuild();      
    }
    int qry(int x)
    {
        if(mi<=x) return len;
        return upper_bound(s+1,s+len+1,x)-s-1;  
    }
    int bqry(int l,int r,int x)
    {
        int re=0;
        for(int i=l;i<=r;i++)
            re+=(a[i]<=x);
        return re;
    }
}blk[N/B];
bool check(int x,int l,int r,int idl,int idr,int k)
{
    int re=0;
    re+=upper_bound(t+1,t+top+1,x)-t-1;
    for(int i=idl+1;i<idr&&re<k;i++)
    {
        re+=blk[i].qry(x);
        if(r-blk[i].R+re<k) break;
    }
    return (re>=k); 
}
int main()
{
    scanf("%d%d",&n,&m);
    for(int i=1;i<=n;i++)
        a[i]=read();
    for(int i=1,id=1;i<=n;i+=B,id++)
        blk[id].build(i,min(i+B-1,n));
    while(m--)
    {
        int opt=read(),l=read(),r=read(),k=read(),idl=ID(l),idr=ID(r);
        if(opt==1)
        {
            if(idl==idr) blk[idl].bmdf(l,r,k);
            else 
            {
                blk[idl].bmdf(l,blk[idl].R,k);
                blk[idr].bmdf(blk[idr].L,r,k);
                for(int i=idl+1;i<idr;i++)
                    blk[i].mdf(k);
            }
        }
        else
        {
            blk[idl].rebuild();
            blk[idr].rebuild();
            top=0;
            if(idl==idr) 
                for(int i=l;i<=r;i++)
                    t[++top]=a[i];
            else
            {
                for(int i=l;i<=blk[idl].R;i++)
                    t[++top]=a[i];
                for(int i=blk[idr].L;i<=r;i++)
                    t[++top]=a[i];
            }
            sort(t+1,t+top+1);
            int lc=0,rc=inf;
            while(lc<rc)
            {
                int mid=(lc+rc>>1);
                if(check(mid,l,r,idl,idr,k)) rc=mid;
                else lc=mid+1;
            }
            write(lc);
            putchar('\n');
        }   
    }

    return 0;
}
展开阅读全文

没有更多推荐了,返回首页