2020 CSP-J 多校赛 T3

矩阵 (matrix)

题目限制

  • 内存限制:512MB
  • 时间限制:1000ms
  • 文件输入输出
    • 输入文件:matrix.in
    • 输出文件:matrix.out

题目知识点

  • 思维

题目来源

2020 CSP-J 多校赛 T3


题目

题目背景

14 已经想不出新颖的题目背景了,所以他准备用序列来构造矩阵

题目描述

W Y WY WY (机房巨佬) 给了 14 14 14 一个长度为 n n n 的序列 a a a 和 一个长度为 m m m 的序列 b b b
14 14 14 玩序列玩腻了,准备用这两个序列构造出一个 n × m n \times m n×m 的矩阵 c c c
14 14 14 规定 c i , j = a i × b j c_{i, j} = a_i \times b_j ci,j=ai×bj,14 是一个好奇的小朋友,他想知道在这个矩阵中有多少给子矩阵的元素之和的关于 k k k
其中 k k k 14 14 14 给定的一个常数

格式

输入格式 (matrix.in)

输入第一行,包含三个整数 n , m , k n, m, k n,m,k,表示序列 a a a 的长度、序列 b b b 的长度 和 14 14 14 给出的常数
输入第二行, n n n 个整数,表示序列 a a a
输入第三行, m m m 个整数,表示序列 b b b

输出格式 (matrix.out)

输出只有一行,表示符合条件的子矩阵个数

样例

样例输入
3 4 20
2 3 5
4 6 3 2
样例输出
4
样例解释

构造出的矩阵为:

[ 8 12 6 4 12 18 9 6 20 30 15 10 ] \begin{bmatrix} & 8 & 12 & 6 & 4 & \\ & 12 & 18 & 9 & 6 & \\ & 20 & 30 & 15 & 10 & \\ \end{bmatrix} 8

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值